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ABSTRACT 

 Colloidal semiconductor quantum dots (QDs) are considered to be a promising 

candidate for bio-imaging and solar cells because of their extraordinary photo-physical 

properties. The ultimate goal of this dissertation is to design a reliable matrix and a 

reproducible method to prepare QDs-based biocompatible probe for fluorescence 

applications. Synthesis of quantum dots requires a large amount of ligands to improve the 

stability at high temperature. However, for further application and surface modification of 

QDs, excess ligands must be removed. In this dissertation, I will first describe using gel 

permeation chromatography (GPC) as a media to purify different types of QDs. A more 

systematic study of the tolerance of the GPC purification method against other nanocrystal 

materials will also be addressed. I will further demonstrate that GPC can be used as a 

reactor to perform solvent change and ligand exchange reactions with QDs. With the help 

of GPC purification technique, well-isolated and characterized nanomaterials are prepared 

to study the sequential chemistry of QDs. I specifically study the effect of neutral ligands 

on the photo-physical properties of the QDs and their influence on the inorganic surface 

overcoating (shell growth) reaction. This information is essential in preparing bio-

compatible QDs with high brightness and long term stability. The GPC purified QDs have 

also been used to perform surface modification reactions with a range of polymeric 

imidazole ligands (PILs). The PIL capped QDs display colloidal stability, low toxicity and 

non-specific binding, and high brightness in aqueous solution. Measles virus, a model 
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envelope virus, has been labeled by these bio-compatible QDs and retained its infectious 

ability against host cells.
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CHAPTER 1 

INTRODUCTION TO SEMICONDUCTOR QUANTUM DOTS 

1.1. Introduction 

Semiconductor nanocrystals, known as quantum dots (QDs), are roughly spherical pieces 

of direct band-gap semiconductors with diameters on the order of 1-10 nm. The most well-

known examples are the II-VI, III-V and IV-VI binary and their alloyed materials such as 

CdS, CdSe, InP and PbS. Compared with organic dyes, the QDs display a number of better 

characteristics for fluorescence applications, namely (1) narrower emission coupled with 

greater excitation cross-sections, (2) better photo-stability and high quantum yield, (3) most 

importantly rationally tunable emission wavelengths1,2. The electronic characteristics 

of quantum dots are determined by their size and shape. This means we can control the 

color of the emission light given off by a quantum dot just by changing its size3. 

The application of quantum dots can be grouped into two areas. When a photon is 

absorbed, the QD will be excited and generate an electron-hole pair. If we allow the 

electron and hole pair to recombine and emit a photon, we can use QDs in the labeling 

techniques 2,4 or in the light emitting technology5,6. For example, QD Vision, a company 

focusing on advancing the application of QDs, has commercialized the QD-embedded 

Color IQ™ optical component, which can provide more natural viewing experience 

through saturated color in display applications, such as TVs and monitors. On the other 

hand, if we separate the electron and hole pair, we can apply the QDs in the solar cell1,7,8 

or photo catalysis area9,10. Sargent’s group from University of Toronto is one of the leading 
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group in studying QDs-based solar cells. According to their most recent study, they have 

promoted the power conversion efficiency to 9.9%, which is the new record for QD-based 

solar cells8. 

 

1.2. Synthesis of quantum dots 

The most widely used procedure to prepare the binary QDs is the hot-injection 

method11. In order to produce quantum dots with well-defined shapes (typically spherical) 

with narrow size distribution, the reaction is kinetically controlled by running the system 

at high temperature and quenching the reaction before the Ostwald ripening. As shown in 

Figure 1.1, once the two precursors are mixed at high temperature, the concentration of 

the monomers will rapidly increase. At the very beginning, the nucleation rate is much 

faster than the growth rate, thus nuclei are formed during this process. Following 

nucleation, when the monomer concentration has decreased lower than the nucleation 

threshold where the reaction rate is slower than the growth rate, homogeneous growth of 

particles is enforced. When the monomers are nearly consumed, the small particles may 

start to dissolve, and redeposit onto larger particles. This process is known as the Ostwald 

ripening, which significantly increases the size distribution of the mixture. Therefore, the 

reaction should be quenched before the Ostwald ripening begins, for example by lowering 

the reaction temperature. 

A vast number of studies have been focused on developing the precursor chemistry 

for hot-injection method over the past 20 years. In 1993, Bawendi’s lab first developed the 

hot-injection method by using organometallics (such as dimethylcadmium) and 

trioctylphosphine chalcogenide11. In 2001, Peng’s group advanced this technique by using 

salts prepared by mixing metal oxide with organic acid as the metal precursor to replace 
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the toxic and unstable organometallics12. Then Cao’s group13 and Hens’ group14 changed 

the chalcogenide precursor into chalcogen powders or chalcogen oxide, which shows better 

control during the reaction. Most recently, Owen’s group has shown thioureas as another 

alternative chalcogenide precursor to prepare QDs with high monodispersity15. 

Researchers have also tried to reduce the reaction temperature by extending the reaction 

time. Manna’s group16 and Owen’s group17 have shown that CdSe QDs can be prepared 

from magic size clusters at 80 °C in 40 hours, but even now, the quality of the QDs prepared 

at lower temperature is still not comparable with the samples prepared by hot-injection 

method. 

However, the quantum yield (QY) of the as-synthesized QDs is relatively low due 

to the trap states generated by the dangling bonds present on the surface. In order to 

optimize photo-physical properties of quantum dots, core/shell heterostructures have been 

introduced and widely explored. The inorganic shell on the surface can eliminate the 

dangling bonds and passivate both anionic and cationic surface sites simultaneously18. The 

representatives for core/shell stucture samples are CdSe/CdS QDs19,20, CdSe/CdZnS QDs 

21and InP/CdS QDs22. 

In order to perform a successful shell growth experiment, the lattice mismatch 

between the core and shell materials needs to be minimized. For example, since CdSe and 

CdS have similar crystal structure, a giant CdS shell can be grown onto the CdSe core 

sample23. While the lattice mismatch between CdSe and ZnS is relative large, people 

normally grow an alloy CdxZn1-xS (note: in this dissertation, CdZnS represents the CdxZn1-

xS formula) shell onto the CdSe core surface instead of growing ZnS shell directly21. 
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Figure 1.1 Reaction scheme for preparation of monodispersed colloidal QDs. Stage 1. 

Nucleation reaction; stage 2. Nanocrystal growth reaction; stage 3. Reaction quenching; 

stage 4. Ostwald ripening. 

 

There are two strategies to perform shell growth over the QD core samples. The 

first method is the simultaneous addition of the two precursors. For example, Bawendi’s 

lab has shown by using cadmium oleate and octanethiol as the precursor, high quality 

monodispersed round shape CdSe/CdS core/shell QDs are obtained24. Simultaneous 

addition method has also been used to achieve anisotropic shell growth. Alivisato’s group25 

and Manna’s group26 have shown that by changing the surfactants during the growth 

process, CdSe/CdS nanorods and tetrapods can be prepared by addition of cadmium and 

sulfur precursors at the same time.  
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Figure 1.2 Scheme for growth of core/shell quantum dots via simultaneous addition and 

SILAR methods 

 

The second method for shell growth is called Selective Ionic Layer Adhesion and 

Reaction (SILAR). As shown in Figure 1.2, the idea is instead of injecting two precursors 

at the same time, for each monolayer growth only one precursor is introduced at a time and 

all available surface sites are saturated in each half cycle. This method was first proposed 

by Peng’s group27 and has become widely used in preparation of binary structures in 

solution. The advantage of this method is that (1) the isotropic growth is enforced and the 

homogenous nucleation side reaction of the shell material is minimized; (2) the sample 

shell thickness can be easily controlled by changing the amount of addition cycles during 

SILAR shell growth process19. Additionally, as shown in a recent study from our group, 

using a sub-monolayer equivalent in each cycle can increase the yield of the shell growth 

reaction and reduce the influence of the nucleation side reaction20. Therefore, the majority 

of the core/shell materials described in the dissertation are prepared by a SILAR method 

with 0.8 monolayers equivalent precursor addition in each cycle. 
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1.3. Surface modification of quantum dots 

The as-synthesized core only or core/shell QDs are capped with long hydrocarbon 

ligands such as oleic acid. These capping ligands separate the particles from each other and 

are crucial in maintaining the colloidal stability of the particles under synthetic conditions. 

However, for both electronic application and bioimaging applications, the original ligands 

are not ideal since they behave as an insulting layer and are not water-soluble. Therefore, 

surface modification of the QDs is normally required for any QDs-based device / probes.  

 For electronic applications of QDs, the biggest requirement for surface 

modification is to replace original surfactants with shorter ligands. Waston’s group has 

shown that by shortening the distance between particles, the charge transfer efficiency is 

dramatically improved28. In order to improve the stability of the QDs after the ligand 

exchange, the binding affinity between the new ligands and QD surface must be high. 

Therefore, new ligands bearing a strong nucleophilic anchoring group such as thiol and 

amine are commonly used for the surface modification reactions. Representative ligands 

in this group are pyridine29, mercaptopropionic acid30 and ethanediol31. Recently, Talapin’s 

group has proposed to use inorganic ligands such as metal chalcogenide complex (MCC) 

as an alternative surfactant to completely replace the insulating hydrocarbon chain32. They 

further demonstrated that single atoms (like halide33 or chalcogenide34) can also be used to 

passivate the surface sites and maintain the QDs colloidal stability. 

 To use QDs as a probe or sensor in a biological system, the QDs need to be water-

soluble. Besides, desirable QD properties such as high QY and small size are hoped to be 

maintained. The most common ligands people have used for this purpose are mono-thiol 

based ligands, such as mercaptopropionic acid35 and cysteine21. However, the binding 
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strength between mono-thiol ligands and the QD surface is not that strong and thiol ligands 

are known to be photo unstable. In order to improve the stability of the exchanged sample 

in aqueous solution, ligands with multiply binding groups / non-thiol based anchoring 

groups have also been studied and this part will be further discussed in Chapter 4.  

 

1.4. Quantum dots in bioimaging applications 

As mentioned previously, the photo-physical properties of QDs make them 

particularly attractive for use as luminescent biological probes. The emission wavelength 

of lead chalcogenide based QDs is within the near-infrared (NIR) region, which makes 

them exceedingly interesting for in vivo biological imaging36. In addition, the large two-

photon absorption cross section of QDs makes them attractive for multi-photon microscopy 

application as well37. 

In order to use QDs for selective labeling in bio-imaging applications, the linker 

needs to have at least three different functional groups: one group to stabilize QDs in water; 

one group providing binding ability with the QDs surface; and the last group for attachment 

onto the biological target. So far, there are four common strategies to link QDs with specific 

biological targets through different interactions / reactions. They are (1) avidin-biotin 

bridging38; (2) coupling between carboxyl and amine groups;39 (3) metal affinity between 

polyhistidine-appended biomolecules and metal-rich QDs;40 (4) azide-alkyne “click” 

reactions41. With these specific functionalization onto the nanocrystal surface and 

biomaterials, QDs have been used to label proteins42, cells2 and viruses41.  
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 Some demonstrations of the conjugation of QDs with specific ligands targeting 

biomolecular imaging applications are provided in the following examples. In an early 

work from Bruchez’s group, they employed CdS/ZnS QDs encapsulated within an amine-

modified copolymer and coupled to streptavidin tospecifically label the cancer marker 

Her2, actin filaments, and nuclear antigens4. Around the same time, Simon’s group 

demonstrated the use of QD bioconjugates for long-term multicolor imaging of living 

cells.43 Later, Nie’s group prepared water-soluble QDs encapsulated by a polymer bearing 

the tumor-targeting ligands, and performed in vivo cancer targeting and imaging.43 Ting’s 

group has shown that QDs can be tagged onto mammalian cell surface proteins.42 Cai’s 

group has labeled the enveloped baculovirus with polymeric imidazole ligands (PILs) 

capped QDs through a copper-free click reaction and maintained the virus infectivity41. 

 

1.5. Thesis overview 

The ultimate goal of this dissertation is to design a reliable matrix and a 

reproducible method to prepare QDs-based biocompatible probe for fluorescence 

applications. The first body of work, described in Chapter 2, demonstrates that gel 

permeation chromatography (GPC) can be used as a media to purify a large variety of 

nanomaterials with better efficiency and reproducibility. This is an essential step for further 

surface modification since the impurities and excess ligands have negative impact on the 

reactions. I further use GPC as a reactor to perform solvent change and ligand exchange 

reactions with QDs, which shows better control and efficiency though the reaction process. 

Chapter 3 is a study of the influence of neutral ligands effect on the photo-physical 

properties of the QDs and their influence on the inorganic surface overcoating (shell 
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growth) reaction. The ensemble quantum yield (QY) and lifetime components will be 

changed upon introduction of ligands to purified QD surface. Strong binding ligands such 

as trioctylphosphine tend to significantly restore the brightness in a reversible manner. The 

neutral ligands are also involved in the shell growth reaction. Three different amines are 

used to grow core/shell QDs by the SILAR method. Compared to strong binding primary 

amine ligands, weakly associated tertiary amine can increase the yield of the reaction and 

improve the quality of the synthesized particles. This information is essential in preparing 

high quality core/shell QDs and designing new hydrophilic ligands to prepare high quality 

QDs as biocompatible probes in fluorescence applications. 

In Chapter 4, GPC purified QDs are used to perform surface modification reactions 

for biological applications: a range of methacrylate backbone polymeric imidazole ligands 

(MA-PILs) prepared by RAFT polymerization and post-modification were synthesized and 

associated to the QD surface. These MA-PIL capped QDs provide water solubility, 

colloidal stability, low toxicity and non-specific binding, and high brightness. These bio-

compatible QD samples are further used to label Measles virus, a model envelope virus. 

The labeled virus retains its infectious ability against host cells, which demonstrates that 

MA-PIL capped QDs have a potential to be widely used in areas of biolabeling and 

bioimaging. 
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CHAPTER 2 

ADVANCES IN THE USE OF GEL PERMEATION CHROMATOGRAPHY (GPC) TO 

NANOCRYSTALS: PURIFICATION, SOLVENT CHANGE AND SURFACE MODIFICATION  

 

2.1 Introduction 

Quantum dots (QDs) are coated with a layer of surfactant molecules (ligands) that provides 

charge balance and colloidal stability. As-synthesized samples also contain unreacted 

precursors as well as reaction byproducts, high boiling point solvent(s), and/or an excess 

of ancillary ligands added to control growth and improve stability44–46. Applications almost 

universally require purification and/or surface modification of the as-synthesized QDs: (1) 

for optical applications, the as-synthesized QDs are not very bright, which requires the 

formation of an inorganic shell to increase the quantum yield (QY);19,24,47,48 (2) for 

bioimaging applications, surface modification by encapsulation or ligand exchange is 

essential for water solubility;2,21,49 and (3) for electronic applications, excess ligands 

adsorbed on the surface hinder the charge transfer between the QDs and receiving 

substrates.50–52 Effective means for the isolation of QDs with well-defined surface 

properties is essential to the applications of QDs in solution or assembled into matrices, 

and is also a necessary condition for the development of sequential preparative chemistry 

for QD-based nanostructures. 
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The traditional method for purification of QDs is a sequential precipitation and 

redissolution (PR) process52,53. For the frequent case of QDs sterically stabilized by ligands 

with long hydrocarbon tails in nonpolar phase (e.g., hexane, toluene, chloroform, or 

tetrahydrofuran), flocculation of QDs is achieved by introducing anti-solvents (e.g., 

acetone, methanol, isopropanol) to increase the polarity of the solvent mixture. Impurities 

that remain soluble can then be decanted away, and the QDs redissolved in a suitable 

solvent.  

While the PR method is convenient and scalable, it carries several limitations. 

Fundamentally, the separation is based on solubility; for differently prepared batches of 

QDs the necessary precipitation conditions are not identical since the intermolecular forces 

governing the solubility of the as-synthesized QDs are not inherently controlled properties. 

Some impurities may have solubility properties similar to the QDs, such that multiple PR 

cycles are necessary for complete removal. From a practical perspective, in some cases, 

the amounts of polar anti-solvents that are used are not tightly controlled, but even if these 

procedures are performed systematically, the turbidity that is considered to represent 

adequate precipitation of the QDs is often a subjectively determined parameter; this can 

lead to run-to-run variability and present difficulties in adequately describing procedures 

in literature. An important consideration for any QD purification method is the effect not 

only on the amounts of unbound species remaining in the sample but also the effect on the 

number and type of bound ligands that terminate the QD surface53. In the case of the PR 

method, the introduction of a foreign solvent can perturb the QD surface by displacing 

native ligands, as has recently been reported for the case of QDs purified by PR with 

methanol as the anti-solvent.54 
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 The strong dependence of the photo-physical properties55,56 and chemical 

reactivity of QDs on the surface ligand population has helped to motivate increasing 

interest in alternative nanoparticle purification methods57. One alternative to PR methods 

is the use of biphasic extraction processes58; however, separation is still based on 

differences in polarity. Other methods include ultracentrifugation of non-flocculated 

samples59,60, electrophoretic deposition61,62, and chromatographic techniques38,63–65. The 

relatively large size of QDs compared to small molecule impurities makes size-exclusion 

chromatography (SEC) an attractive technique.  

In the work described below, we have introduced a highly precise and effective gel 

permeation chromatography (GPC) purification technique for QDs and other nanocrystals. 

GPC is a type of SEC that operates with an organic mobile phase and is widely used in 

characterization of macromolecules such as polymers. As with any SEC technique, GPC 

employs a mobile phase that is a solvent for the mixture to be separated; the mixture passes 

through a stationary phase and subsequently fractionates, with elution volumes that directly 

correlate with the hydrodynamic size of the analytes. Colvin’s group63 and Roman’s 

group65 have studied the application of SEC to reduce the size distribution of Cd-based 

QDs in the organic and aqueous phases, respectively. Winnik’s group64,66 and Kanelidis et 

al.67 have used SEC to separate QDs from excess polymers after surface modification. 

Bawendi and co-workers have demonstrated the use of size-exclusion gel filtration 

chromatography (GFC) to isolate QDs from dye molecules in the aqueous phase38,68, and 

Biesta et al. have used GPC to separate Si nanoparticles from dye molecules in 

acetonitrile69. Until now, however, chromatography has not been described as a method to 
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isolate natively capped nanocrystals as the basis for further manipulations, nor has its 

efficacy as a purification technique been compared directly to precipitation-based methods.  

Initially I used GPC with a polystyrene stationary phase as a technique to purify 

two types of as-synthesized nanoparticles: CdSe QDs and CdSe/CdxZn1−xS core/shell QDs. 

Compared with the PR purified samples, the GPC purified QDs exhibited significantly 

smaller ligand/QD ratios, similar stability at room temperature, and even better stability at 

high temperature (toward precipitation and/or ripening). Then the tolerance of this 

technique has been studied by testing a variety of nanoparticles with different shapes and 

capping ligands. Furthermore, we demonstrate CdS shell growth on the same CdSe QDs 

with different purification methods and cysteine ligand exchange on CdSe/CdxZn1−xS QDs 

to reveal how impurities and excess ligands can alter the surface chemical reactions of the 

QDs. Finally, GPC has been used as a reactor to perform solvent change and ligand 

exchange reactions with different QD samples. 

 

2.2  Purification of CdSe and CdSe/CdZnS QDs 

2.2.1  Feasibility of QDs purification by GPC 

We elected to use a polystyrene gel medium to study the purification of 

hydrophobically-capped QDs. Previous authors have reported successful GPC of QDs 

using such media.64 According to studies of GPC in the polymer area,70 strong ionic 

interactions with the stationary phase tend to prevent metal containing polymers from 

successfully travelling through the column. Therefore, before attempting to purify the QDs 

by GPC, we first tested whether the QDs would irreversibly adsorb in the column due to 
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particle-column interaction. The QD samples we used to test the efficacy of the column 

were CdSe1 and CdSe/CdZnS1 as described in the Materials Section. Due to the difficulty 

in visualizing the concentration of impurities and excess ligands separated from the QDs 

solution, the dye alizarin was initially chosen to represent “small” molecules and we 

compared its chromatogram to that of the QDs. As shown in Figure 2.1A-C, the QDs exit 

the column when the elution volume equals approximately 1/3 of the total volume of the 

column (the expected void volume). Because the molecular weight operating range of the 

SX-1 GPC medium is described by the manufacturer as 600 to 14000 and both CdSe QDs 

and CdSe/CdxZn1-xS QDs are larger than that, the QDs do not spend any time in the pores 

and elute quickly from the column. However, small molecules (such as impurities, excess 

ligands or alizarin) should enter the pores more easily, which is expected to increase their 

retention time relative to that of the QDs. Alizarin was eluted at a volume close to the total 

volume of the column, thus indicating highly precise resolution from the QD samples. 

 The yield of the GPC column purification is always around 100% (CdSe1 QDs, 

100.2%; CdSe/CdZnS1 QDs, 98.3%; alizarin, 101.4%), which avoids sample loss 

associated with biphasic or PR purification processes. Additionally, the QDs elute in a tight 

band (95% of the QDs sample flows out in 2 mL), which maintains the high concentration 

of the QDs solution and improves the column separation resolution against the later eluting 

impurities and excess ligands. After being rinsed with toluene following each purification 

process, the column can be used more than 10 times and provide very comparable 

purification results. 

 We also tested the stability of the QDs after GPC purification. According to 

absorption spectra shown in Figure 2,1E and 2.1F, both CdSe QDs and CdSe/CdxZn1-xS 
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QDs maintain their absorption features after the GPC purification (there is a decrease in 

relative absorbance in the UV range, which may be associated with the absorption spectrum 

of impurities prior to purification). Since the absorption of the QDs is determined by their 

size and size distribution, this confirms that QDs do not aggregate or etch during the GPC 

purification process. At room temperature the 1GPC CdSe QDs are stable for more than 2 

weeks when stored in toluene on the bench (we only continuously measured the absorption 

spectrum for 2 weeks, the actual lifetime of the CdSe QDs may be much longer than this), 

while the CdSe/CdxZn1-xS QDs began to slowly precipitate out from the solution after 1 

day. 

At high temperature, the CdSe1_1GPC sample demonstrated even better stability 

than 2PR samples. In particular, purified samples were injected to a simulated shell growth 

solvent of 1:2 oleylamine:ODE (v/v, 9 mL total) and heated up to high temperature. As 

shown in Figure 2.1F, the first absorption peak position is almost fixed (or blueshifted 

~1nm) when the temperature reaches 180°C, and then slowly redshifts after extended 

heating at 200°C. This phenomenon is unlike the relatively larger blueshift (around 3-4nm) 

that is frequently observed in PR purified QDs under similar conditions71, which might be 

explained by the etching of QDs’ surface in the presence of excess ligands. The redshift 

observed in Figure 2.1F upon extended heating may be a signature of Ostwald ripening. 

2.2.2  Analysis of the GPC purified QDs: CdSe samples 

The GPC purified CdSe1 QDs samples were characterized by 1H NMR to measure 

the amount of organic solvents and ligands that remained. The 1PR and 2PR samples were 

also characterized for comparison. Both ODE and oleic acid have resonances from their 

olefin protons with distinctive chemical shifts in the range of 5 ppm to 6 ppm, which makes 
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them convenient as representative impurities and ligands whose presence and 

concentration can be determined by NMR72–74. 

 

Figure 2.1 (A-C) GPC traces of QDs and small molecule representative dye. The sample 

concentrations (shown by the square points) are measured by UV-Vis and normalized to 

the concentration of the injection solution (considered as 100). IV = injection volume. TV 

= total volume of column. (A) CdSe1 QD sample; (B) CdSe/CdZnS1 QD sample; (C) 

Elution of alizarin in toluene. (D-F) Stability verification of core and core/shell QDs 

purified by GPC based on absorption spectra.  (D) Absorption spectra of CdSe1 

(normalized to the 1st absorption peak at ~534nm) purified by 1PR, 2PR, and 1GPC; (E) 

Absorption spectra of CdSe/CdZnS1 (normalized to the 1st absorption peak at ~535nm) 

purified by 1PR and 1GPC; (F) Lowest energy extinction peak position shift of GPC 

purified CdSe1 at high temperature. Copyright 2013 American Chemical Society. 
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The 1H NMR results shown in Figure 2.2 reveal two types of olefin features: sharp 

peaks characteristic of the molecules in free solution, and a broadened peak that we 

associate with molecules bound to (or in dynamic exchange with) the QD surface. The 

spectrum in Figure 2.2A indicates that the 1PR sample still had a significant amount of 

ODE. After one additional PR purification, the amount of ODE is shown to have been 

reduced but not completely removed. The 1GPC sample, on the other hand, shows a clean 

spectrum with only a broadened (~50 Hz) olefin resonance in the 5 ppm to 6 ppm range. 

We attribute this resonance to oleate species that are strongly interacting with the QD 

surface; in what follows we will use “OA” to refer to oleate-based constituents of all types.   

In order to have a better understanding of the ligand/QD ratio for samples with 

different purification processes, THF was used as an internal standard in subsequent 

quantitative 1H NMR measurements. The total concentration of the ligands can be 

calculated based on the 1H NMR peak integrals; dividing by the QD concentration, as 

determined by the absorption spectrum, gives the ligand/QD ratio in each sample. Taking 

into account the uncertainty associated with the integration of the NMR peaks, we are able 

to specify average ligand/QD ratios with a precision of ±5 ligands per QD (any inaccuracy 

in the molar extinction coefficient of the QD batch would affect all samples by a constant 

factor). The 2PR sample had an average 172 OA and 56 ODE per QD, while the 1GPC 

sample had only 135 OA on the QD surface. We did not observe any sharp peaks in the 1H 

NMR spectrum at the olefin region of OA, which suggests that there was no free OA in 

either system. Consequently, the ligand density difference is more likely due to weakly 

bound OA or OA-bearing impurities (i.e. Cd(oleate)2 or CdxSey(oleate)z)
33,75. We also 

measured the ligand density for a sequential 6PR sample, which shows a comparable, but 
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still larger result than the 1GPC sample (147 OA per QD). As shown in Figure 2.2D, we 

also used GPC to purify the same QDs sample twice, which yields a similar ligand density 

on the QDs. For the 2GPC samples, the extra column purification did not decrease the 

ligand density on the QDs’ surface, which suggests that all the weakly adsorbed ligands 

can be effectively removed during 1GPC process. 31P NMR spectra were also measured to 

confirm the complete removal of phosphorus containing species (i.e. TOPSe, TOP, TOPO 

appearing as byproducts of QD synthesis) by GPC (Figure 2.2E-F). Excess ODE and OA 

species could be detected by 1H NMR in GPC solvent fractions eluted at later times (Figure 

2.3). To test the dependence of the GPC purification technique on the initial sample 

concentration, we purified a series of three aliquots of the same CdSe QD sample with 

different initial concentrations (58µM, 115 µM and 175 µM) by GPC and observed <1% 

variation in the number of ligands/QD in the eluted products.  

These results demonstrate that GPC purification is an efficient method to isolate 

QDs with reproducible ligand ratios. Because GPC operates on the basis of the 

hydrodynamic size difference and not polarity or a specific affinity interaction, the 

(entropic) driving force that contributes to the separation is fixed and we can get highly 

reproducible results from this purification method. The fact that the samples prepared by 

multiple PR cycles contained larger numbers of ligands raised the question of whether the 

“excess” OA ligands in such samples represented higher surface coverage, or the presence 

of soluble OA-containing species. 

Diffusion ordered NMR spectroscopy (DOSY) can be used to characterize the 

association of molecules with nanoparticles74,76,77 and was used here to determine the 

extent to which oleate in each sample is associated with the QDs’ surface. Here, relative 



www.manaraa.com

19 

 

diffusion constants were used to measure the hydrodynamic radius to accommodate some 

run to run instrument variability in the absolute diffusion constant measurements. 

 

  

Figure 2.2 (A-C) Qualitative 1H NMR spectra of the CdSe1 QD sample purified by 

different methods. The insets are the expanded views of the spectra in the range 4.5-

6.5 ppm for the olefin protons of OA and ODE. (A)CdSe1_1PR; (B)CdSe1_2PR; 

(C)CdSe1_1GPC. Asterisks in (C) indicate peaks associated with the toluene solvent that 

are present in each sample. (D) Ligand/impurities-to-QDs ratio for CdSe1 QDs purified by 

different methods; the ratio is calculated based on the quantitative 1H NMR and UV-Vis 

spectra. (E-F) The 31P NMR spectra of CdSe1 1PR (E) and 1GPC (F) QD samples, 

demonstrating the removal of phosphorus containing species (such as TOPO) by the 

column purification. Copyright 2013 American Chemical Society. 
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Figure 2.3 The 1H NMR spectrum of material separated from the CdSe1 QD sample after 

the GPC purification, revealing the presence of ODE and OA. 

 

In order to obtain the characteristic diffusion constant for OA, we relied upon the 

olefin peaks because their chemical shift is well separated from those of THF protons. 

Based on the measured diffusion coefficients of the OA and THF in each run (shown in 

Figure 2.4), the characteristic hydrodynamic diameter (DH) of the OA in different samples 

can be calculated using the Stokes-Einstein equation by assuming the DH of THF is fixed 

at 0.63 nm (as reported by Dyadin et al.78). The average DH of the OA from the 

CdSe1_1GPC sample was 4.42 nm, which is very close to the core diameter (3.5 nm) and 

an OA shell with thickness of 1~2 nm. However, the average DH of the 2PR sample was 

1.85 nm, which suggests an average among OA bound to the QD surface and faster 

diffusing OA associated with small molecule impurities. If we assume all the OA from the 
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CdSe1_1GPC QD sample is bound to the surface and consider molecular oleic acid as 

representative of the unbound oleate species in QD samples (DH = 0.88 nm), then 66% of 

the OA in CdSe1_2PR sample were attached to the QD surface, while 34% remained 

unbound. 

  

Figure 2.4 DOSY spectra of CdSe1 samples in THF-d8. The measurements were done 

with 100ms diffusion delay and 2ms diffusion gradient length. (A)CdSe1_1GPC QDs; 

(B)CdSe1_2PR QDs. Copyright 2013 American Chemical Society. 

 

The 1PR, 2PR and 1GPC CdSe1 QDs samples were also characterized by TGA to 

corroborate the NMR results of ligand/QDs ratio differences from the different purification 

processes. As Figure 2.5 shows, the TGA curves can be separated into 3 regions79. Below 

120°C, mass loss primarily signifies the evaporation of the solvent (toluene); between 

120°C and 300°C, mass loss is attributed to the disappearance of neutral molecules; 

between 300°C and 500°C, the ionically bonded ligands break down. We assume the 

remaining mass after heating to 500°C was attributed to the inorganic core. As listed in 

Table 2.1, the CdSe1_1GPC sample did not show any significant weight difference until 

the temperature reached 300°C; while both CdSe1_1PR and CdSe1_2PR QDs 

demonstrated neutral molecule removal over 120-300°C, which is in agreement with the 

NMR results. Based on the observed mass losses, the ionic-ligands/QDs mass ratio of 

CdSe1_2PR sample was 1.35, whereas CdSe1_1GPC sample was only 0.73. This 
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difference can be explained by previously mentioned possible impurities in the 2PR 

sample, such as Cd(oleate)2 or CdxSey(oleate)z. The mass loss from 120-500°C can be 

attributed to the removal of all the organic molecules from the system (except for the 

solvent) and the organic/inorganic ratios of CdSe1_2PR and CdSe1_1GPC samples were 

1.83 and 0.78 respectively. 

According to the absorption spectrum of CdSe QDs before and after the GPC 

purification, the size and size distribution of the samples did not change. However, we also 

considered the possibility that there could be some Cd and/or Se containing impurities 

remaining in the 2PR sample that are removed by GPC purification. In order to understand 

how the more stringent removal of impurities by GPC altered the Cd/Se ratios in the 

samples, the inorganic core portions of the CdSe1_2PR and CdSe1_1GPC were 

characterized by ICP_MS75,80. As shown in the Figure 2.6, the Cd/Se ratio is similar 

between the two samples, but the 2PR sample has a slight, but statistically significant, 

increase in Cd that can be attributed to the residual Cd rich impurities (e.g. Cd(oleate)2). 

 

2.2.3  Analysis of the GPC purified QDs: CdSe/CdZnS core/shell samples 

CdSe/CdxZn1-xS QDs were prepared by a selective ionic layer adhesion and reaction 

(SILAR) process with CdSe QDs as the core and (TMS)2S, Zn(oleate)2 and Cd(oleate)2 as 

the shell precursors. Since the shell generation process involves the highly reactive reagent 

(TMS)2S and a more complicated reaction mixture than the synthesis of CdSe QDs, there 

are likely more impurities in the core/shell samples than in the core-only ones. 

Additionally, core/shell samples frequently encounter solubility problems after multiple 
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Figure 2.5. TGA curves of CdSe1 QDs purified by different methods with the arrows 

indicating regions assigned to the loss of the specified solvent or ligand. Copyright 2013 

American Chemical Society. 

 

Table 2.1. Summary of the mass remaining at different temperatures from TGA tracea 

CdSe1 QD samples  1PR 2PR 1GPC 

Mass remaining 

at different temperatures 

120°C 1.000 1.000 1.000 

300°C b 0.644 0.832 0.975 

500°C c 0.256 0.354 0.562 

a Results are normalized to the mass at 120°C, at which point the solvent (toluene) is 

presumed to have been removed. b Weakly binding ligands are removed before 300°C. 
c Ionically binding ligands are presumed to disappear in the region of 300-500°C. 

Copyright 2013 American Chemical Society. 

 

PR cycles81,82, and published ligand exchange procedures for core/shell QDs often describe 

only a single precipitation step83. Therefore, it is imperative to find an alternative way to 

purify the core/shell QDs other than the PR method. In order to prove the efficacy of the 
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GPC purification process, both 1PR and 1GPC CdSe/CdZnS2 QDs were characterized 

by 1H NMR and TGA. 

  

Figure 2.6 Inductively-coupled plasma mass spectrometry (ICP-MS) analysis of the Cd and 

Se content in CdSe1_2PR and CdSe1_1GPC QD samples. The concentrations are 

normalized to that of Se to find the Cd-to-Se ratio in each sample. 

 

As shown in Figure 2.7, the large difference in the organic/QD ratio between the 

two samples was confirmed by the TGA results. In the CdSe/CdZnS2_1PR sample, more 

than 72% of the mass was lost in the organic molecule breakdown region (from 100°C to 

500°C), whereas the amount was less than 23% in the 1GPC sample. In the 1H NMR 

measurements, both OA and ODE can be observed in the spectrum of CdSe/CdZnS2_1PR 

sample, whereas the 1GPC sample displays a much cleaner spectrum with only OA 

appearing on the QD’s surface. Therefore, GPC purification can also be used for 

CdSe/CdxZn1-xS QDs with high efficiency. 
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Figure 2.7. TGA curves of CdSe/CdZnS2 1PR (blue) and 1GPC (red) QDs, normalized 

to 100°C, where the solvent (toluene) has been completely removed. The insets highlight 

the region of olefin protons from OA and ODE (4.5-6.5ppm) in the 1H NMR spectra. 

Copyright 2013 American Chemical Society. 

 

2.3  Purification of other nanomaterials in different shapes and with different 

capping ligands 

In order to study the tolerance of the GPC purification technique, a variety of 

nanomaterials have been prepared and purified by the column. We first studied the 

purification efficiency of three different nanomaterials with different capping ligands to 

confirm this technique is not limited to oleate capped II-VI materials. The three samples 

we used were organic phosphonate capped CdSe QDs12, carboxylate capped InP QDs84 

(prepared by Brandi Cossairt’s group at the University of Washington) and thiol capped 

Au nanoparticles85. The tetradecylphosphonate (TDPA) capped CdSe QD samples were 

prepared with organic phosphonate capping in trioctylphosphine (TOP) and 
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trioctylphosphine oxide (TOPO) solvents. Therefore, all the ligands and impurities 

prepared by this method should be phosphorus-containing molecules, which makes 31P 

NMR a sensitive technique to characterize the impurities / surface ligands in the sample 

solution. As shown in Figure 2.8A-C, after two times PR cycles, there were still a 

significant amount of free TDPA, TOP and TOPO remaining in the system, while the only 

remaining phosphorus-containing molecules in the GPC purified sample are the ionic 

binding phosphonate ligands. For the other two samples, we did not have a good handle 

(like olefin proton or phosphorus) for the NMR measurements. Therefore, TGA was used 

to compare the ligands-to-nanocrystal-ratio directly before and after the GPC purification. 

As shown in Figure 2.8D-E, a significantly smaller mass loss was observed after GPC 

purification for both samples, which indicates that this method can also be used for a large 

variety of materials with different capping ligands. 

 Another concern is the influence of the nanocrystal shape on the GPC purification 

results. Therefore, four CdSe/CdS core/shell heterogeneous structure nanocrystals with 

different shapes were prepared19,26. As shown in Figure 2.9, Sample A is a typical 

core/shell spherical CdSe/CdS QDs made by SILAR method; samples B to D are 

CdSe/CdS nanorods prepared following a published experimental procedure, and the 

shapes were controlled by changing the ligand ratio and seed concentration. From sample 

A to sample D, these nanomaterials have different sizes and aspect ratios, which provides 

a good model to study the nanoparticle shape effect on the GPC purification technique. 

As shown in Figure 2.10A-B, similar to the CdSe/CdxZn1-xS samples, after GPC 

purification, the only remaining surfactant on the OA capped CdSe/CdS QDs were the 

strongly associating oleate ligands. All the other olefin containing or phosphorus 
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Figure 2.8 (A)-(C) The 31P NMR spectra of phosphonate capped CdSe QD samples 

purified by different methods, demonstrating the removal of phosphorus containing species 

(such as free TDPA, TOP and TOPO) by the column purification. (D)-(E) normalized TGA 

curves of thiol capped Au nanoparticles (D) and carboxylate capped InP QDs before (red) 

and after (blue) GPC purification. 

 

containing impurities and excess ligands have been successfully removed. The CdSe/CdS 

nanorod samples behaved similarly to the phosphonate capped CdSe QD samples. As 

shown by the 31P NMR spectra before and after the GPC purification (Figure 2.10C-D), 

we can clearly see that after GPC, the only remaining phosphorus containing molecules are 

the ionic binding ligands, which have a broad signal in the spectrum. All the other free 

phosphorus containing ligands were effectively removed. These results confirm that the 

GPC purification technique is not limited by the shape/size of the nanomaterials. 
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Figure 2.9 The TEM images of CdSe/CdS nanocrystals with different shapes and sizes 

 

 

Figure 2.10 31P NMR spectra, with 1H NMR spectra inset, of the CdSe/CdS nanocrystals 

with different shapes before and after GPC 
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2.4  The excess ligands’ impact on further surface modification of QDs 

On the basis of the results presented above, GPC has been proven to be a highly 

effective method for the nanocrystal purification.  The achievement of an efficient method 

for the preparation of clean QD samples allows us to test whether impurities that reside in 

samples prepared by standard purification methods have a significant effect on further 

surface modification reactions. In the discussion shown below we employed a CdS shell 

growth titration experiment on CdSe QDs, and cysteine ligand exchange on CdSe/CdxZn1-

xS QDs to study the effect of excess ligands and impurities on the surface reactivity of QDs. 

2.4.1 Titration of CdS Shell Growth on CdSe QDs.  

CdSe/CdS core/shell QDs are known for high QY19,86 and asymmetric charge 

separation87. Some of the most widely practiced preparation procedures utilize the SILAR 

method to grow a CdS shell on the CdSe core18,19,23. The shell growth process requires that 

initial organic ligands be displaced so that material can be added to the crystal surface; as 

a result, we expect that shell growth could depend strongly on the surface environment80,88, 

including the presence of excess ligands and/or impurities.  Here, we employed a set of 

titration experiments to test whether the differences observed in analyses of GPC and PR 

purified QDs lead to different synthetic outcomes in the initial stages of core/shell growth 

by SILAR. A quantity of Cd and S precursors equivalent to 1.0 monolayer of CdS shell 

growth was added to CdSe1 core samples purified by GPC or by PR only. In Figure 2.11A-

B, 1.0 monolayer equivalent of Cd(oleate)2 was added first, followed by 1.0 monolayer 

equivalent of (TMS)2S. In Figure 2.11C-D, the order of addition was reversed so that S 

was added first. In all cases, the additions were conducted stepwise in doses of 

0.1 monolayer, and time was allowed following each step for the reaction to near 
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completion prior to the withdrawal of a small aliquot for spectroscopic analysis. The 

progress of the shell growth is characterized based on the bathochromic shift of the 

absorption spectrum (Figure 2.11E-H) versus effective shell thickness applied. 

 

Figure 2.11 Absorption spectra and the lowest energy extinction peak position shift of the 

aliquots taken during the CdS shell growth titration experiment on CdSe1 QDs purified by 

either 2PR or 1GPC. Waterfall absorption spectrum (A) 1GPC, Cd dosing first; (B) 2PR, 

Cd dosing first; (C) 1GPC, S dosing first; (D) 2PR, S dosing first. The interval between 

aliquots was 10 min. (E,F,G,H) Plots of lowest energy exciton absorption as a function of 

targeted CdS shell thickness for (E) 1GPC, Cd dosing first; (F) 2PR, S dosing first; (G) 

1GPC, S dosing first; (H) 2PR, S dosing first. Copyright 2013 American Chemical Society. 

 

As shown in Figure 2.11, the 1GPC purified QDs experienced a lower rate of red-

shifting than did the 2PR purified sample when Cd was introduced first in the SILAR 

process. After the Cd cycle, both of these samples exhibited a similar growth rate in the S 
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cycle. We interpret the smaller redshift as an indication of a lower growth rate for Cd in 

the 1GPC sample. Experiments in which the S precursor was added first also show a 

difference in the initial reactivity of 1GPC and 2PR samples. The 2PR sample (Figure 

2.11D) displayed little change in effective bandgap upon the addition of (TMS)2S, 

suggesting little reaction with the QD surface given the large redshift associated with S 

addition following Cd (Figure 2.11B). In the subsequent Cd dosing cycle, we saw a 

relatively large redshift in the first Cd injection followed by a continuous redshifting at a 

slower rate. In contrast, the 1GPC sample (Figure 2.11C) experienced a continuous 

redshift during the entire S dosing process followed by a large shift in the first four Cd 

injections and smaller shifts for the later ones. The FWHM of the emission peak (Figure 

2.12) was measured to characterize the size distribution during the titration process and is 

helpful in explaining the difference in reactivity towards added (TMS)2S between the 

1GPC and 2PR samples. Compared to the results when Cd is introduced first, the size 

distribution increases significantly during the S dosing titration cycle, with a larger increase 

for the 1GPC sample.  

We believe that the difference in reactivity of the initial QD surface towards the 

addition of Cd(oleate)2 can be explained by the presence of a Cd-bearing impurity in the 

2PR sample. For the 1GPC sample, once the Cd(oleate)2 was introduced as the Cd 

precursor, part of it was diverted to saturate the solution instead of reacting on the QDs’ 

surface. However, for the 2PR sample, due to the possible presence of Cd(oleate)2 as an 

impurity and surface etching by the excess amount of weakly bonded oleic acid, the 

equilibrium solubility limit for Cd(oleate)2 above the QD surface had already been reached. 
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Figure 2.12 Full width at half maximum (fwhm) of the emission peaks during the titration 

experiment described in Figure 2.11 of the narrative. A larger peak width is representative 

of a broader size distribution, though the intrinsic linewidth of QD emitters at room 

temperature also contributes. 

 

Hence, in the 2PR sample more of the added Cd(oleate)2 could be used for the shell growth, 

which resulted in a faster growth rate and larger redshift than was observed in the 1GPC 

sample. 

Our observations suggest that etching and/or ripening processes are competing with 

shell growth when (TMS)2S is added first in both the 1GPC and 2PR samples. Ligand 

exchange experiments have shown that TMS reagents can facilitate removal of oxyacid 

ligands through the formation of O-TMS byproducts89,90. In the present case, the total 

amount of (TMS)2S for 1.0 monolayer shell growth, 319 per QD, is much larger than the 

total OA ligand density on the QD surface in either sample. The relatively larger size 



www.manaraa.com

33 

 

distribution change observed on (TMS)2S addition in the 1GPC titrations could be an 

indication that effective removal of excess ligands and impurities decreases the colloidal 

stability of the QDs towards the addition of excess (TMS)2S.  

Based on our observations, impurities and/or excess ligands present in PR purified 

samples influence the reactivity of the CdSe QD surface towards the addition of shell 

precursors in both Cd-first and S-first cases. For both PR and GPC purified samples, 

initiating the SILAR process with Cd produced larger redshifts and better maintained the 

emission linewidth; this result is in keeping with much SILAR literature in which Cd is 

added first19,20. Despite the slower initial redshift under Cd addition seen in the GPC 

purified sample, we stress that we have obtained core/shell QDs with good optical 

properties from these starting materials after multiple SILAR cycles. The availability of 

highly purified QD samples via GPC should allow the possible roles of various intrinsic 

and purposely-added minor constituents in shell growth reactions to be investigated more 

thoroughly in future work. 

2.4.2 Cysteine ligand exchange reaction of CdSe/CdxZn1-xS QDs.  

Ligand exchange reactions are essential to prepare water-soluble QDs with minimal 

hydrodynamic diameters; cysteine is a convenient monothiol ligand that presents a 

zwitterionic nanoparticle surface and has been shown to enable renal clearance of QDs21. 

In order to achieve better ligand exchange efficiency, the amount of original ligands should 

be reduced as much as possible. Based on the 1H NMR and TGA results described above, 

the CdSe/CdZnS2_1GPC sample had a much smaller amount of OA than the 
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CdSe/CdZnS2_1PR sample. We investigated the influence of this difference in purity on 

a biphasic (toluene/water) cysteine ligand exchange reaction.  

Before mixing the aqueous and the organic solutions, both phases are clear in each 

of the two samples (photographs available in Figure 2.13A-E). After stirring the mixtures 

for 15 min, material began to precipitate in the aqueous phase of the 1PR sample and this 

appeared to impede the ligand exchange reaction. After 30 minutes, we observed that the 

aqueous phase became colorful in the 1GPC sample; this change in solubility is evidence 

that the ligand exchange reaction is proceeding successfully. After 1 hour, almost all of the 

color had transferred in the 1GPC sample, while the 1PR sample still had not recovered. 

This result demonstrates that a clean surface of the original QDs aids in promoting a 

successful ligand exchange reaction, and that CdSe/CdxZn1-xS core/shell QDs with such a 

clean surface can be achieved by GPC. The cysteine capped 1GPC QDs were stored in a 

refrigerator and slowly precipitated out after 2 days (such limited stability is characteristic 

of cysteine-capped QDs). The QY of these water-soluble QDs is 46.6%, which is suitable 

for bioimaging applications. We have achieved a successful cysteine ligand exchange with 

1PR QDs previously, but due to the limited reproducibility of the PR purification method, 

the reaction rarely proceeded. In contrast, the GPC purified sample consistently showed 

efficient exchange with the new cysteine ligand and transfer to the aqueous phase. 

 

2.5  In situ solvent change with QDs on GPC 

Applications of QDs sometime requires solvent change in order to optimize surface 

modification / device fabrication process. The traditional method to change the solvent of 
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Figure 2.13 (A)-(E) Photographs of the QDs and cysteine mixtures during the ligand 

exchange. CdSe/CdZnS2 1PR sample is on the left and 1GPC sample is on the right. The 

purification process includes one-time precipitation by ethanol and hexane, QDs 

redissolution in pH=8 buffer and filtration by polyethersulfone membrane (pore size: 0.2 

μm). (F) QY of the cysteine capped QD sample. The excitation wavelengths used for each 

measurement are marked by the red line. Absorption spectra (black) and emission spectra 

(blue) of QDs are shown as solid lines, while dashed lines indicate rhodamine 590 in 

ethanol. Copyright 2013 American Chemical Society. 

 

nanocrystal solution is by pumping the old solvent out by vacuum and redispersing the 

sample in the new solvent. However, since the sample has to be pumped dry to remove the 

old solvent, it is likely to cause irreversible aggregation of the particles, especially for the 

purified ones55. It would be ideal if we could change the solvent in solution phase while 

simultaneously doing the purification. The size of the solvent molecules is also much 

smaller than the nanoparticles, which made GPC probable media to perform the solvent 

change process. By injecting the nanocrystal sample in old solvent directly to the GPC 

column swallowed in the new solvent, I was able to test this hypothesis. Since in GPC the 
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larger molecule elutes out faster than the small ones, the nanocrystals should flow out in 

new solvent while the old solvent molecules are trapped by the gel porous sites.  

 Two solvents that have been used frequently for QD purification and single phase 

surface modification experiments in this lab have been tetrahydrofuran (THF) and toluene, 

and so they were chosen for initial tests on the GPC solvent change. There are two concerns 

while using GPC to change the solvent of the nanocrystals solution. One is that if the 

diffusion rate between two solvents is faster than the size selection process, the solvent 

change would not completely proceed; the other issue is that the gel could collapse while 

mixing with two solvents and lose its size selectivity. Therefore, I first flowed pure THF 

through the toluene GPC column. Based on NMR results, THF flowed out when the elution 

volume was close to the total volume of the column and we observed a very sharp switch 

between the old solvent (toluene) and the new solvent (THF). This demo experiment 

confirmed that the mixing between two solvents does not influence the size selective 

behavior of the GPC column. 

In order to further confirm that the gel would not collapse when mixing with two 

solvents, an un-purified sample was used to test the solvent change process. If we could 

effectively switch the solvent of the nanocrystal sample solution and purify the 

nanocrystals at the same time, it would demonstrate that the mixing of two solvents does 

not change the overall structure of the gel in the column. Besides, it is also convenient to 

combine these two processes into one sequence. As shown in Figure 2.14, organic 

phosphonate capped CdSe QDs in toluene were used to study this in situ solvent change 

on a THF GPC column. According to the 31P NMR, the sample was purified after traveling 

through the column. Moreover, the solvent of the sample solution completely changed from  



www.manaraa.com

37 

 

 

Figure 2.14 31P NMR of the sample before (A) and after (B) the GPC solvent change 

process. The inset in B was the 1H NMR of the solvent after GPC, which confirms that the 

solvent is completely switched into THF.  
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toluene to THF after this process. We also performed a similar process, but flipped the 

old/new solvents (old solvent: THF, new solvent: toluene), and obtained similar results. 

These data confirmed that solvent change can be achieved by the GPC. 

 

2.6  In situ ligand exchange reaction with QDs on GPC 

Traditional method for ligand exchange reaction with QDs employ a huge excess 

of new ligands21. One reason is that there has not been a convenient method to separate the 

exchanged sample and old ligands during the exchange reaction, and the only way to drive 

the equilibrium to the forward direction is by increasing the amount of reagent, which is 

the new ligand. The old ligands on the nanocrystal surface are typically metal carboxylate 

or phosphonate, which are much smaller than the nanocrystals in size. If we used GPC as 

the ligand exchange reactor and perform the reaction on the column, we should be able to 

effectively separate the old ligands from the exchanged nanocrystals and improve the 

reaction efficiency. Additionally, the reaction time can be easily tuned by adjusting flow 

rate. Moreover, as we demonstrated previously, GPC can be used as a media to effectively 

purify the nanocrystals. That means we could potentially combine purification of as 

synthesized QDs, ligand exchange reaction and purification of exchanged QDs into one 

step. The ligand exchange reaction can be grouped into two categories based on the size of 

the new ligands relative to the operating range of the column. With this in mind, two model 

reactions have been studied: octanethiol (small new ligands) exchanging oleate-capped 

CdSe QDs and polymeric imidazole ligands (PILs, big new ligands) exchanging oleate-

capped CdSe/CdZnS QDs. 
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2.6.1  Oleate-capped CdSe QDs modified by octanethiol 

We first loaded the new ligands (octanethiol) into the column, and then rinsed with 

a small volume of the pure solvent (toluene), and then injected the unpurified QD samples. 

As shown in the cartoon in Figure 2.15, the QDs will first be purified by going through a 

certain volume of the GPC column without reacting with the new ligands. And then the 

purified QDs will contact the new ligands and perform ligand exchange reaction. The 

excess new ligands will be removed since the exchanged QDs will travel through another 

blank part of GPC before eluting out from the column. Since the GPC can assist in 

separating the old ligands from the exchanged QD samples, this in-situ GPC exchange 

should be more effective than the traditional benchtop experiment. As shown in Figure 

2.15 C-D, the remaining oleate species of the GPC exchanged sample was only one third 

of the ones on the normal exchanged samples (both exchanges were close to complete, 

which makes it difficult to get exact ligand-to-QD-ratio according to quantitative NMR 

measurements). Additionally, the starting material of the GPC exchange reaction was the 

unpurified sample (Figure 2.15A) while the QD sample for the benchtop experiment is the 

GPC purified one (Figure 2.15B), which further addressed the efficiency of the GPC in-

situ exchange technique. 

 One more advantage of the GPC in situ exchange with small molecules is that it 

could remove the excess new ligands after the exchange reaction. The thiol capped QDs 

are known to be photo unstable, and normally people put more ligands into the exchange 

sample to slow down this process21,91,92. On the other hand, if the excess new thiol ligands 

are removed, the sample should be more likely to precipitate. As shown in Figure 2.16 A-

B, after storing the sample in the fridge for 12 hours, the GPC exchanged sample started to 
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Figure 2.15 Left: Cartoon of reaction scheme for in-situ GPC exchange reaction with small 

molecules. Right (A-D): the expanded views of the 1H NMR spectra in the range 4.5-

6.0 ppm for (A) unpurified stock solution, (B) GPC purified sample, (C) benchtop 

exchanged sample and (D) in-situ GPC exchanged sample. 

 

precipitate while the benchtop exchanged one remain stable in solution, which indicates 

that there were much less amount of free thiol remaining in the GPC exchanged solution 

than the benchtop one. TGA was also used to confirm the removal of the excess ligands. 

Since the thiol exchange reaction were close to complete in both experiments, smaller mass 
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loss from GPC exchanged sample suggest that excess new thiol ligands have been 

effectively removed from the system. 

 

Figure 2.16 Left: normalized TGA curves of GPC in-situ exchange sample (blue) and 

normal exchange sample (red). Right: Pictures of the thiol capped GPC in-situ exchange 

sample and normal exchange sample after 12 hour storage in fridge.  

 

2.6.2  Oleate-capped CdSe/CdZnS QDs modified by polymeric ligands 

Polymeric imidazole ligands (PILs) have been considered as a promising candidate 

in preparation of bio-compatible QDs and they will be further addressed in Chapter 4. Here, 

we used PILs as a representative of the macromolecule to study the in-situ GPC ligand 

exchange. As shown in the cartoon in Figure 2.17, for the macromolecule, the elution rate 

is the same as the nanoparticles while traveling inside the column. Therefore, a mixture of 

the PILs and unpurified CdSe/CdZnS QDs were injected together through the GPC column 

swallowed in chloroform. Since the flow rate of this column is faster than the toluene 

column (1mL/min compared to 0.4mL/min), within 10 minutes, the ligand exchange 

reaction was finished. As shown in Figure 2.17C, the original ligands oleate were almost 
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completely replaced by the new PILs and the PIL capped QD samples prepared by in-situ 

GPC exchange can be easily dispersed in water for biological labeling and imaging.   

 

Figure 2.17 Left: Cartoon of reaction scheme for in-situ GPC exchange reaction with 

macromolecules. Right (A-C): 1H NMR spectra of the (A) pure PILs (B) unpurified 

CdSe/CdZnS QDs (C) PIL capped QDs prepared by in-situ GPC exchange. Insets are the 

expanded views of the 1H NMR spectra in the range 4.5-6.0 ppm. 

 

2.7  Conclusion 

We have demonstrated that gel permeation chromatography can be used as a simple 

and highly effective technique to purify monodisperse nanocrystal samples from their 
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inevitable by-product and excess ligand impurities. This method provides more confidence 

and better reproducibility than the traditional precipitation/redissolution purification 

processes. As stated previously, GPC purifies the nanocrystals of their synthetic impurities 

and excess ligands on the basis of hydrodynamic size by a fixed separation driving force 

with high resolution. The mobile phase for this chromatographic technique is an organic 

solvent in which the nanocrystals remain miscible, and therefore affords a single phase 

purification that does not risk perturbing the original binding environment. Polarity is an 

essential factor in the precipitation of nanocrystals; however, due to its variance among 

different batches and uncertainty as to the solubility characteristics of undesired impurities 

and/or excess ligands, it is an unreliable property on which to base the isolation of 

nanocrystals. Furthermore, core/shell QDs can present solubility limitations after multiple 

precipitations, which are amply circumvented by the GPC purification technique. 

A variety of spectroscopic methods (including NMR, DOSY and electronic 

absorption), elemental analysis, thermogravimetric analysis and surface modification 

techniques have been combined in order to present a systematic analysis of the GPC 

purification of the nanocrystals. These combined analyses provide qualitative and 

quantitative information about the nanocrystals surface, and validate both the feasibility 

and efficiency of the GPC purification.  

The surface modification experiments that we performed on the core and core/shell 

QDs, coupled with the analyses above, demonstrated that constituents of crude QD samples 

that may remain following precipitation/redissolution purification, but can be effectively 

removed by GPC, can have a profound effect on subsequent surface modification reactions. 

It is clear that studies of the mechanistic details of such reactions, which are of primary 



www.manaraa.com

44 

 

concern for proposed fluorescence and optoelectronic applications of QDs, must be 

conducted in view of the possible roles of impurities and excess ligands.  

I have also described how we have demonstrated that GPC can be used as a reactor 

to perform solvent change and ligand exchange reaction with higher efficiency and better 

control. Combined with purification, GPC can be used as a multi-step processor for the 

surface modification of nanocrystals. 

In providing a relatively clean and highly stable QD surface, GPC purification has 

the potential to contribute significant value in investigations of ligand exchange, ligand-

mediated growth of inorganic layers, and other nanoparticle/ligand interactions. For 

example, it is our hope that future applications of this purification method can enable 

measurement of surface ligand exchange reactions of QDs with well-defined mass action 

relationships, address the role of weakly and/or neutrally-binding ligands in controlling 

non-radiative recombination, and perhaps most importantly, contribute to the development 

of quantifiable metrics of sample quality that allow QDs batches prepared in different 

settings to be used interchangeably in applications or as the basis for further synthetic work.  

 

2.8  Materials 

The following chemicals were used as received. Cadmium oxide (CdO; 99.999%), 

Zinc oxide (ZnO; 99.999%), Trioctylphosphine (TOP; 97%) and Trioctylphosphine oxide 

(TOPO; 99%) were purchased from STREM Chemicals. Oleic Acid (99%), 1- Octadecene 

(ODE; 90% technical grade), 1-Tetradecylphosphonic Acid (TDPA; 98%), Selenium (Se; 

99.999%) and L-Cysteine (98+ %) were purchased from Alfa Aesar. Bio-Beads S-X1 GPC 
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medium was obtained from Bio-Rad Laboratories, Inc. Toluene-d8 (D, 99.5%) and 

Tetrahydrofuran-d8 (THF; D, 99.5%) were obtained from Cambridge Isotope Laboratories, 

Inc. Decylamine (95%) was purchased from Sigma Aldrich. Oleylamine (80-90%) and 

Bis(trimethylsilyl) sulfide ((TMS)2S; 95%) were purchased from Acros Organics. 

Rhodamine Chloride 590 (R590, MW 464.98) was obtained from Exciton. Toluene (99.5% 

ACS analysis grade) was purchased from Mallinckrodt Chemicals. 200 Proof Ethyl 

Alcohol (Ethanol) was obtained from Decon Laboratories, Inc. Acetone (99.9%) was 

purchased from VWR. Methanol (99.9%) was purchased from Fisher Scientific. Synthetic 

or analytical procedures either under nitrogen (N2) or vacuum environment were carried 

out using Schlenk line techniques, or a glovebox. 

Synthesis of CdSe QDs. 60 mg CdO and 330 mg oleic acid were introduced into a 

three-neck flask with 6 mL ODE as the noncoordinating solvent. The flask was heated to 

100°C and vacuum was applied to remove air and water from the system. The flask was 

continuously heated to 270°C under N2 environment to produce a colorless and clear 

mixture. Afterward, the reaction mixture was cooled to 130°C and vacuum was applied 

again to remove evolved water. The mixture was reheated to 270°C under N2 and 0.64 mL 

TOPSe solution (prepared by dissolving Se in TOP in a glove box, with concentration 

2.2M) was quickly injected. The reaction flask was allowed to cool down in ambient air to 

room temperature (the temperature decreasing trajectory is available in the Supporting 

Information, Figure S1). The ratio between Cd:Se:oleic acid is 1:3:2.5 and the lowest 

energy extinction peak is at 534 nm. 

Synthesis of core/shell QDs. A selective ionic layer adhesion and reaction 

(SILAR) approach was used to grow both CdSe/CdS and CdSe/CdxZn1-xS core/shell QDs. 
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A portion of as-synthesized CdSe core was diluted with hexane and flocculated by 

methanol and acetone. After decanting the supernatant, the QDs were redissolved into 

hexane and stored in the fridge (4°C) for more than 12 hours. All the undissolved materials 

were removed by centrifugation and the sample was precipitated again by an addition of 

methanol and acetone. Afterward, the QDs were brought into a measured volume of 

hexane. The UV-Vis absorption spectrum was recorded at a known dilution of the sample 

to determine the size and quantity of QDs45. 

The solution of QDs in hexane was transferred to a solvent of 1:2 oleylamine:ODE 

(v/v, 9mL total) and degassed at 100°C to remove hexane. Before the addition of the 

reagent via syringe pump, the system was heated to 190°C under nitrogen. The metal 

precursor metal oleate with a concentration of 0.1M. The S precursor was a 0.1M solution 

of (TMS)2S in TOP. The volume increase associated with 1 monolayer coverage of CdS 

(CdxZn1-xS) is calculated based on the radius increase of  3.37 Å (3.2 Å), which is half of 

the wurtzite c-axis unit cell dimensions. Alternating injections of metal precursor and sulfur 

precursor were performed, adding the metal precursor solution first, with injections starting 

every 15 minutes. The flow rate was adjusted to complete each injection over the course of 

3 minutes. The volume of each injection was calculated to apply 0.8 monolayers coverage 

each cycle (a cycle is defined as one metal precursor injection and one sulfur precursor 

injection) and 5 cycles total were performed. After the reaction, the mixture was cooled 

down to the room temperature and the molar extinction coefficient was estimated based on 

the amount of the core introduced at the beginning and the total volume of the solution 

after the synthesis. 
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 Synthesis of TDPA capped CdSe cores. The synthetic solvent is a mixture of 3g 

TOPO and 3mL TOP. The Cd precursor was prepared by heating 60mg CdO and 285mg 

TDPA at 300°C under nitrogen flow until the solution became colorless and clear 

(Cd:Se:TDPA ratio of 1:3:2.2). Afterward, the reaction mixture was cooled to 130°C and 

vacuum was applied to remove evolved water. The mixture was heated back to 360°C and 

quickly mixed a solution of TOPSe in TOP (2.2M). The flask was cooled down under a 

stream of air to room temperature. 

 Synthesis of thiol capped Au particles. The thiolate-capped Au nanoparticles 

(NPs) were prepared by a modified two phase liquid-liquid synthesis method designed by 

Mathias Brust and co-workers85. Briefly, tetrachloroaurate (AuCl4
-) was transferred from 

aqueous solution to toluene by tetrabutylammonium bromide and then the AuCl4
- was 

reduced in the presence of dodecanethiol by stirring the toluene solution with aqueous 

sodium borohydride; the dodecanethiol functions as the ligand for the resulting reddish or 

black solution of Au nanoparticles. 

 Synthesis of CdSe/CdS nanorods. The nanorods were synthesized based on a 

published work.26 The Cd precursor for Sample 2 was a mixture of Cd phosphonate in 

TOPO (92mg CdO, 291mg octadecylphosphonic acid (ODPA) and 80mg hexylphosphonic 

acid (HPA) dissolved in 3g TOPO). After heating the Cd precursor solution to 370°C, a 

mixture of 100nmol phosphonate capped CdSe QDs in TOP and S precursor (60mg S 

dissolved in 1.5g TOP) was injected into the solution. The temperature was kept at above 

350°C for 10 minutes and then cooled down to the room temperature. Sample C was 

prepared in the same method with higher amount of HPA (101mg). Sample D was prepared 

with less amount of CdSe seeds (60nmol) 
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GPC column packing. To pack the preparative column, 4~5 g of Bio-Beads were 

first swollen in toluene overnight. 5 mL clean toluene was placed in the glass column (inner 

diameter ~1 cm) with a filter (0.2 μm pore size filter and glass wool) and a Teflon valve. 

All of the swollen beads were transferred to the column. After the gel settled down and 

formed the column with a height of approximately 31~38 cm, toluene was used to rinse the 

column until no free polystyrene was present in the eluent (tested by UV-Vis absorption). 

QD purification: Precipitation/redissolution process. A portion of the as-

synthesized QD batch was centrifuged to remove any undissolved material. Acetone and 

methanol were used as the anti-solvent to precipitate the QDs (for CdSe QDs, both acetone 

and methanol were used; for CdSe/CdxZn1-xS QDs, acetone alone can flocculate the 

solution). After centrifuging for 5 minutes, the QDs can be separated from the mixture. For 

CdSe QDs, the spin speed is 8000 rpm (8228× g), while it is 5000 rpm (3214× g) for the 

CdSe/CdxZn1-xS QDs. The QDs were redissolved in toluene and labeled as 1 time 

precipitation/redissolution purified sample (1PR). By repeating the above process, we 

obtained 2 times PR purified samples (2PR) and also a 6 times PR purified sample (6PR).  

QD purification: GPC purification process. In order to remove most of the 

synthetic solvent and concentrate the QD sample in toluene, we always carried out a single 

PR cycle before the GPC purification. 1PR QDs (concentration ranges from 5~150 μM 

with 0.5~1 mL injection volumes) were added to the GPC column with toluene as the 

eluent . The sample was collected when the elution volume equaled ~1/3 of the total volume 

of the column (the expected void volume for irregularly spaced spherical beads); this 

volume corresponds to the fraction at which the purified QDs eluted. The total volume we 

collected after GPC purification is approximately 2 mL (more than 95% of the QDs will 
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come out in this range) and the solution was labeled GPC purified sample (1GPC). We 

also obtained 2 times GPC purified samples (2GPC) by reusing the column to purify the 

1GPC samples a second time. 

CdS shell growth on CdSe core titration experiment. After having been purified 

by different methods, the solution of QDs in toluene was transferred to a growth flask with 

an added solvent of 1:2 oleylamine:ODE (v/v, 9 mL total) and degassed at 100°C to remove 

the toluene. Before addition of the reagent via syringe pump (J-KEM Scientific Dual 

Syringe Pump, Model 2250), the flask was heated to 200°C under nitrogen. The Cd 

precursor is prepared by diluting 0.2M Cd(oleate)2 in ODE with 2 equivalents of 

decylamine and a volume of TOP to yield a Cd concentration of 0.1M. The S precursor is 

a 0.1M solution of (TMS)2S in TOP. The CdSe core radius was estimated by a calibration 

curve for its radius as a function of the position of the lowest energy absorption peak. The 

volume increase associated with 1 monolayer coverage of CdS is calculated based on the 

radius increase of 0.337 nm, which is half of the wurtzite c-axis unit cell dimension for 

CdS. We chose to apply dosage equivalents to approximately 0.1 monolayer incremental 

shell thickness in each injection in order to observe the shell growth progression. Each 

injection started every 10 minutes with 3 minutes dosing and 7 minutes delay to ensure the 

completion of the reaction. After dosing 1monolayer (10 injections) of one precursor, the 

other precursor was introduced until the lowest energy absorption peak stopped redshifting. 

Cysteine ligand exchange reaction for CdSe/CdxZn1-xS QDs The ligand 

exchange reaction was performed by a modification of a published method. Purified QDs 

samples were mixed with 1 mL L-Cysteine solution (prepared by dissolving 40 mg L-

cysteine in 1 mL pH=7.4 phosphate buffer solution). The biphasic mixture was stirred 
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vigorously at room temperature for 1 hour, by which time we observed the color transfer 

to the aqueous phase. The QDs were precipitated once by ethanol/hexane, redissolved in 

pH=8 buffer solution and filtered by polyethersulfone membrane (pore size: 0.2 μm) for 

further analysis. 

In-situ ligand exchange reaction. For the reaction between oleate capped CdSe 

QDs and octanethiol, 30nmols of dots were used to react with 0.1g thoil ligands. The total 

volumn of the toluene GPC column is close to 40mL. First the thiol ligands were dissolved 

in 10mL toluene and then loaded onto the column. After that, 6mL pure toluene was 

introduced and then 30nmols unpurified QDs in 0.7mL toluene was injected. The sample 

was rinsed out by toluene. The flow rate for this reaction is 0.4mL/min. A similar 

experiment was performed on the bench with GPC purified QDs mixing with the same 

amount of octanethiol ligands (0.1g). The reaction was quenched by precipitation of 

acetone and methanol. 

For the reaction between oleate capped CdSe/CdZnS QDs and PILs, 10nmols of 

unpurified dots were used to react with 500nmols of 26k MA-PILs described in Chapter 4. 

The mixture of the polymer and QDs were injected into a chloroform GPC (flow rate is 1 

mL/min and total volume is 28mL) and eluted out within 10 min. 

Optical Spectroscopy. The formation of CdSe QDs and CdS or CdxZn1-xS shell on 

the surface was monitored by the absorption spectrum from UV-Vis spectroscopy. The 

optical absorption spectrum was recorded using a Thermo Scientific Evolution Array UV-

Visible Spectrophotometer with toluene as the solvent as well as the blank in a 1cm path 

quartz cuvette. The fluorescence spectra were also used to monitor the growth and size 
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distribution of the QDs. Emission spectra were recorded by an Ocean Optics USB 4000 

spectrometer under ~365 nm excitation. 

NMR Analysis of QDs. Routine NMR samples of the QDs were prepared in 

toluene-d8. The QDs’ concentration is set at approximately 60~100 μM for CdSe QDs and 

5~10 μM for CdSe/CdxZn1-xS QDs; the exact value in each case was measured by UV-Vis 

using the calculated molar extinction coefficient.  The qualitative 1H NMR spectra were 

recorded on a Varian Mercury/VX 300 NMR. The quantitative 1H NMR spectra were 

recorded on a Varian Mercury/VX 400 NMR with THF as the internal standard. The 

relaxation delay used is 26s and the acquisition time is 3s, which in total is equal to 5×T1 

of the THF peak at around 3.5ppm (T1=5.8s) and much greater than the 5× T1 of the olefin 

peak of the oleic acid (T1=0.8s), allowing the system to reach a reliable equilibrium. The 

T1 experiments were performed by using the standard inversion-recovery pulse sequences 

(180° pulse --- delay --- 90° pulse). Diffusion measurements were performed on a Varian 

Mercury/VX 400 using the vendor-supplied Doneshot pulse sequence. QDs were dissolved 

in THF-d8 and spectra were recorded with 100ms diffusion delay and 2ms diffusion 

gradient length. Diffusion ordered spectroscopy (DOSY) analysis was done using the 

routines incorporated in the VnmrJ 2.2D software. The spectra of oleic acid and ODE in 

toluene-d8 were recorded on a Varian Mercury/VX 400. The 31P NMR spectra of CdSe1 

(concentration around 100 μM) samples were measured by a Bruker Avance III HD 400 

with 512 scans.  

Thermogravimetric Analysis (TGA). Samples were prepared by concentrating 

them under vacuum, and then transferring them to the platinum pan in liquid form 

(colloidal QDs are difficult to transfer in solid form). TGA was conducted on a TA 
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Instruments Q5000 with a heating rate of 10°C/min from 40°C to 650°C under constant 

nitrogen flow. 

Inductively Coupled Plasma-Mass Spectrometry Analysis. Inductively coupled 

plasma-mass spectrometer (ICP-MS) samples were prepared by drying the CdSe QDs 

solution via vacuum and digesting the samples in 2 mL aqua regia. The concentrations of 

both Cd and Se were detected by a Thermo-Finnigan Element XR ICP-MS. 

Quantum Yield Measurements. The quantum yield (QY) of the CdSe/CdxZn1-xS 

QD samples was measured relative to rhodamine 590 (R590, QY=99% in ethanol).2 The 

excitation wavelength was chosen based on the optical isosbestic point of the QDs-toluene 

solution and R590 in ethanol. Fluorescence spectra of QD and R590 dye were taken under 

identical spectrometer conditions on Varian fluorescence spectrometer in triplicate and 

averaged. The optical density was kept below 0.1 between 500 and 800nm to avoid internal 

filtering effects. The QY was calculated based on the integrated intensities of the emission 

spectra, the absorption at the excitation wavelength and the refraction index of the solvent 

using the equation: 

 𝑄𝑌𝑄𝐷𝑠 = 𝑄𝑌𝑑𝑦𝑒 ∗
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒𝑑𝑦𝑒

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒𝑄𝐷𝑠
∗

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑄𝐷𝑠

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑑𝑦𝑒
∗

𝑅𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥𝑡𝑜𝑙𝑢𝑒𝑛𝑒
2

𝑅𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥𝑒𝑡ℎ𝑎𝑛𝑜𝑙
2  

The precision of this measurement in our case is limited by the precision of the 

absorbance measurement (~1%) while the accuracy among samples in different solvents 

will be limited by the accuracy of the refractive index correction term.

http://www.chem.sc.edu/mslab/icp.html
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CHAPTER 3  

EFFECT OF NEUTRAL LIGANDS ON THE PHOTO-PHYSICAL PROPERTIES AND SHELL 

FORMATION OF THE QUANTUM DOTS 

3.1 Introduction 

 The surfactants on the quantum dots (QDs) surface not only maintain the particle 

colloidal stability, but also influence QDs’ electronic structure and optical properties55,93,94. 

As described previously, according to the covalent bond classification, the ligands on QDs 

can be grouped into three different groups, namely X-type ligands (ionic bond), L-type 

ligands (neutral electron donor) and Z-type ligands (neutral electron acceptor).95 Compared 

to bulk atoms, the surface atoms have lower coordination and the binding strength between 

the nanocrystal (NC) surface and L-type ligands is typically weak. As shown in Chapter 2, 

these weakly associated ligands can be easily removed by standard purification steps. 

However, the remaining unpassivated sites can create electronic states within the 

semiconductor bandgap and trap the photo generated carriers before they recombine, which 

significantly influences the photoluminescence properties of the QDs. Therefore, a better 

understanding of the ligand coordination chemistry is essential for QDs’ application in 

lighting and bio-imaging. Besides, during the shell growth process, the precursors need to 

associate to the NC surface and it is possible that such ligand coordination is competing 

with the precursor conversion.  In this chapter, we will focus on studying how the neutral 
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ligands, especially the L-type ligand, affect the growth and the photo-physical properties 

of the core/shell QD structure.  

 The first project described here is an experiment designed to identify the role of 

specific molecular ligands in maintaining the high photoluminescence (PL) quantum yield 

(QY) observed in as-synthesized CdSe/CdZnS and CdSe/CdS QDs. Although it has been 

possible for many years to prepare core/shell quantum dots with near-unity quantum yield 

through high-temperature colloidal synthesis, purification of such colloidal particles is 

frequently accompanied by a reduction in quantum yield. Here, the previously described 

gel permeation chromatography (GPC) technique is used to remove weakly associated 

ligands without a change in solvent: a decrease in ensemble QY and average PL lifetime 

are observed. Minor components of the initial mixture that were removed by GPC are then 

added separately to purified QD samples to determine whether re-introduction of these 

components can restore the photo-physical properties of the initial sample. We show that 

among these putative ligands, trioctylphosphine and cadmium oleate can regenerate the 

initial high QY of all samples; but only the “L-type” ligands (trioctyphosphine and 

oleylamine) can restore the QY without changing the shapes of the optical spectra. Based 

on the PL decay analysis, we confirm that quenching in GPC-purified samples and 

regeneration in ligand-introduced samples are associated chiefly with changes in the 

relative population fraction of QDs with different decay rates. The reversibility of the QY 

regeneration process has also been studied; the introduction and removal of 

trioctylphosphine and oleylamine tend to be reversible while cadmium oleate is not. 

Finally, isothermal titration calorimetry (ITC) has been used to study the relationship 
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between the binding strength of the neutral ligands to the surface and photo-physical 

property changes in QD samples to which they are added. 

 In the second project, we monitored precursor conversion and shell growth on CdSe 

QDs in the presence of three different amine solvents in an effort to increase the synthetic 

yield of the shell growth. UV-vis absorption and photoluminescence spectroscopy are 

applied to monitor shell growth. Photoluminescence excitation spectroscopy was applied 

to confirm the presence/absence of precursor nucleation. The binding affinities of the 

amine molecules to the QD surface are also studied to understand the influence of such 

interactions on shell growth. We find that a tertiary amine solvent is effective in increasing 

precursor conversion and suppressing nucleation of side products when compared to 

primary and secondary amines at a similar solvent mole fraction. The difference appears 

to be associated with competition for surface sites between the metal carboxylate precursor 

and the primary amine.  

 

3.2 Quantum Yield Regeneration: Influence of Neutral Ligand Binding on 

Photo-physical Properties in Colloidal Core/Shell Quantum Dots 

3.2.1 Introduction  

As a result of their size-tunable narrow emission with high quantum yield and 

remarkable photo-stability, quantum dots are of particular interest for bio-imaging 

applications and display applications. However, a limitation in many of these cases is the 

nonradiative decay rate, which competes with light emission or charge transfer96. 

Nonradiative decay is manifested in less-than-unity quantum yields in ensemble samples 

and in fluorescence intermittency (blinking) in single-particle measurements.23,97–100 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ITs-5gsAAAAJ&citation_for_view=ITs-5gsAAAAJ:u-x6o8ySG0sC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ITs-5gsAAAAJ&citation_for_view=ITs-5gsAAAAJ:u-x6o8ySG0sC
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Whereas the radiative rate is largely controlled by the delocalized band-edge electronic 

states,101–103 nonradiative decay rates can depend sensitively on the interfacial 

structure.104,105 In particular, the surfaces are typically populated by exchangeable ligand 

layers, and numerous studies have examined the ability of ligand exchange to enhance or 

quench QD photoluminescence (PL). 23,33,56,106–108 

As described previously core/shell nanostructures, in which a material with a larger 

bulk band gap encapsulates the core, are a highly effective way to create QDs with lower 

nonradiative decay rates and achieve near-unity quantum yield (QY)19,109. It is notable that 

even in samples with shells only a few monolayers thick, in which the excited states are 

clearly not isolated from the surface, very high QY can be achieved (for example the 

samples we will describe in this chapter). This demonstrates that molecular surface 

termination can be achieved in which almost no intergap states or resonant excitations are 

present. As-synthesized colloidal QD samples typically or inherently contain large 

concentrations of molecules that could coordinate the surface.110 However, applications 

almost universally require purification and/or surface modification of as-synthesized QDs. 

Purification methods have frequently been seen to decrease QY38,111, and also to decrease 

ligand populations53,54,111. It is essential to understand whether the changes in QY are 

reversible, how ensemble QY and decay profiles depend on ligand occupation, and the 

conditions under which surface structures that support high QY can be maintained or 

restored.112 

Photo-physical studies involving the effect of ligands on QDs have recently been 

reviewed.108 Previous reports have largely focused on intraband relaxation113–115, on 

molecules that act as quenchers87,107,116,117, on core-only QDs95,118–121, or have not been 
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accompanied by the analytical tools to assess the extent of binding as an independent 

variable controlling decay rates122. Mulvaney's group has studied the effects of Lewis bases 

and other ligands on radiative recombination in CdSe core-only QDs.106 Ginger's group has 

studied PL quenching in CdSe-based core and core/shell QDs upon introduction of 

ligands,107 while PL enhancement in QDs has been observed with thiol-bearing 

ligands123,124 and amine-bearing ligands125–127 that are not present in the synthetic mixture. 

Until now, however, the effect of putative ligands present in as-synthesized core/shell QDs 

that display high QYs has not been studied. 

As described in Chapter 2, the use of gel permeation chromatography (GPC) to 

separate natively capped colloidal QDs from small molecules in organic solvents has been 

proven to be an effective way to purify the QDs111. This has the effect of removing 

impurities and weakly bound ligands, including phosphines, phosphine oxides, and 

primary amines; enabling the preparation of QDs with surfaces bearing a low and 

consistent number of metal carboxylate equivalents. 

In the study described below, we take advantage of GPC purification of core/shell 

QDs to explore the role of neutral ligands in maintaining high QY. In particular, we 

measured the ensemble QY and PL decay profile of oleate-capped core/shell QDs before 

and after GPC, and then upon re-introduction of putative ligands that were present in the 

growth solution. Historically, PL decays of QDs recorded at low excitation densities have 

frequently displayed multiexponential behavior, which has been interpreted as a 

consequence of a distribution of trapping rates inhabited by different QDs in the 

ensemble.128–130 Through lifetime analysis, it may be possible to distinguish between 

different modes of QY reduction and regeneration in QDs with different densities of 
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unoccupied ligand binding sites. For example, a given reduction in the ensemble QY could 

be brought about by a reduction in QY among all QDs in the sample, leading to a reduction 

in lifetime among all decay components. Another possible mechanism would be the 

selective quenching of a portion of the QDs, leading to an increase in the relative 

amplitudes of short-lifetime decay components. The former case might be expected if non-

radiative recombination in purified QDs occurs via a large number of traps associated with 

vacant surface sites, while the latter case might be expected if ligand occupation modulates 

stochastic quenching processes such as those responsible for fluorescence intermittency in 

single QDs.97,107,131 

In analyzing the response of QDs to the introduction of neutral ligands, it is 

essential to know whether changes in ligand concentration lead to irreversible structural 

changes in the QDs. Therefore, we have also studied the reversibility of the QY 

regeneration process. Additionally, it is valuable to be able to evaluate the actual extent of 

ligand coverage on the QD surface: in other words, what fraction of the added ligand is 

interacting with the QD surface at one time. Changes in the NMR line shape between bound 

and free ligands may not be resolvable in the case of rapidly exchanging ligands, and 

changes in the effective diffusion constant as measured by diffusion-ordered NMR 

spectroscopy (DOSY)74,111 may be difficult to detect for low bound-ligand mole fractions. 

Here, we used isothermal titration calorimetry (ITC)132–136 to differentiate the extent of 

ligand binding in QD samples exposed to phosphine, primary amine, and phosphine oxide 

ligands in an organic solvent. 
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3.2.2  Quantum yield decrease upon purification 

We chose four types of CdSe based core/shell QD materials that we synthesized by 

a selective ionic layer adhesion and reaction (SILAR) method19. The effect of ligand 

occupation on QY in QDs with either pure CdS or CdZnS alloy shells, and with different 

shell thicknesses were studied. CdSe/CdS_1 and CdSe/CdZnS_1 are the thin shell 

samples (1.6 monolayer equivalent shell thickness), and CdSe/CdS_2 and 

CdSe/CdZnS_2 represent thicker shells (4 monolayer equivalent shell thickness). The 

formation of the shell was monitored by withdrawing a small aliquot and diluting into 

toluene; the aliquots were characterized by UV-Vis absorption spectroscopy and 

fluorescence emission spectroscopy (Figure 3.1). 

The QYs of these samples were recorded after isolation of the particles by one cycle 

of precipitation with acetone and redissolution in toluene. As shown in Figure 3.2, the high 

QY indicates a complete formation of the shell onto the CdSe core materials. The detailed 

information of the samples has been summarized in Table 3.1. 

As shown in Chapter 2, NMR has been demonstrated as a useful technique for the 

determination of the presence and interactions between ligands and nanocrystals, 

especially for ligands with a distinctive signal74. As a result, some of the best studied 

ligands on the QDs fall into two groups, namely, the phosphorus-containing group and the 

olefin-proton-containing group, which both can be distinguished easily in 31P NMR or 1H 

NMR spectra. In the present study, the phosphorus-containing group includes 

trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO), which are among the 

solvents used in core synthesis and shell growth, and tetradecylphosphonic acid (TDPA) 

and its cadmium salt (CdTDPA), which were used as the Cd precursor during CdSe core 
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preparation. The olefin-proton-containing species are frequently introduced in the shell 

growth process: for example, cadmium oleate (CdOA) and oleic acid (OA) as the Cd 

precursor, and oleylamine (OAm) and octadecene (ODE) as solvents27. Here, we used 31P 

NMR and quantitative 1H NMR to characterize the QD samples before and after the  

 

Figure 3.1 Absorption and fluorescence emission spectra of aliquots taken during the 

CdZnS (A, C) and CdS (B,D) overcoating processes. Aliquots were taken prior to the shell 

synthesis at reaction temperature and after each injection of the SILAR process (14 minutes 

after the start of the precursor addition). The spectra were normalized to the position of the 

lowest energy extinction peaks. The marks show the points where the desired thickness for 

thin shell (CdSe/CdZnS_1 and CdSe/CdS_1) and thick shell (CdSe/CdZnS_2 and 

CdSe/CdS_2) samples are achieved. 
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Figure 3.2 Quantum yield of CdSe/CdZnS_1 (A), CdSe/CdZnS_2 (B), CdSe/CdS_1 (C) 

and CdSe/CdS_2 (D) QD samples. The excitation wavelengths used for each measurement 

are marked by the red line. Absorption spectra (black) and emission spectra (blue) of QDs 

are shown as solid lines, while dashed lines indicate rhodamine 590 in ethanol as the 

reference dye. 
 

 

Table 3.1 Characterizations of QD samples used before and after GPC purification. 

QD samples CdSe/CdZnS_1 CdSe/CdZnS_2 CdSe/CdS_1 CdSe/CdS_2 

Core radius (nm) a 1.52 1.52 1.65 1.65 

Shell thickness (ML) b 1.6 4 1.6 4 

Absolute QY before GPC  64% 88% 73% 81% 

Relative QY drop after GPC −84% −23% −70% −28% 

Olefin proton to QD ratio 

drop after GPC 
−93% −94% −93% −95% 

Removal of Phosphorus 

containing ligand after GPC? 
Yes Yes Yes Yes 

a The core radius was estimated by a calibration curve describing the radius as a function 

of the position of the lowest-energy absorption peak. b “ML” is the abbreviation of 

monolayer equivalents.  
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purification by GPC. Figure 3.3 shows the NMR spectra of CdSe/CdZnS_1 before 

(Figure 3.3A) and after (Figure 3.3B) the GPC purification in toluene. In Figure 3.3A, 

four sharp signals representing free TOPO (53.48  ppm), TDPA (42.34 ppm), 

dialkylpyrophosphonate (28.74 ppm), and TOP (32.34 ppm) can be identified in the 31P 

NMR spectra20,89,137. A large amount of olefin-containing species (4.8-5.8 ppm, ∼3950 

olefin protons per QD, determined by quantitative NMR and UV-Vis as described 

previously) are represented in the 1H NMR. However, after the GPC purification, all the  

 

Figure 3.3 Characterization of CdSe/CdZnS_1 sample before and after the GPC 

purification. The 31P NMR spectra of the sample before the GPC purification (A) and after 

the GPC purification (B) with the 1H NMR shown in the insets. The marks in (A) indicate 

the peaks associated with the phosphorus-containing molecules that are removed during 

the purification. (C) Absorption spectra of the sample (normalized to 365 nm) before and 

after the purification. (D) Relative emission spectra of the sample (normalized to the 

absorption of the excitation wavelength, 365 nm) before and after the purification. 

Copyright 2015 American Chemical Society. 
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phosphorus-containing ligands have been removed completely and the total amount of 

olefin proton has significantly decreased (Figure 3.3B). As mentioned previously, the 

rounded shape of the peak in the olefin region indicates that the only remaining olefin 

ligands are strongly interacting with the QD surface; we attribute this to an ionic (X-type) 

binding mode of residual oleate. The other three QD samples show similar NMR responses 

to purification (Figure 3.4), and all the results have been summarized in Table 3.1. 

 Concurrent with the removal of the neutral ligands, the emission intensities of the 

particles all decrease upon GPC purification. The relative QY of CdSe/CdZnS_1 

decreased by 84% after GPC with no shift in the absorption and emission spectra, which 

implies that the decrease of brightness is not associated with etching/aggregation (Figure 

3.3 C,D). As discussed below, we attribute the QY decrease to an increase in nonradiative 

decay associated with the removal of weakly associating ligands. Similar results can also 

be observed in the other three samples (Figure 3.5 and Table 3.1). Among the four 

samples, CdSe/CdZnS_1 (84%) and CdSe/CdS_1 (70%) samples show a higher emission 

intensity drop than CdSe/CdZnS_2 (23%) and CdSe/CdS_2 (28%) samples, which can  

 

Figure 3.4 31P NMR spectra of samples before the GPC purification (A, C, E) and after 

the GPC purification (B, D, F) with the 1H NMR shown in the insets for CdSe/CdZn S_2 

(A, B), CdSe/CdS_1 (C, D) and CdSe/CdS_2 (E, F).  
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Figure 3.5 Absorption spectra of the samples (normalized to 365 nm) before and after the 

purification for CdSe/CdZnS_2 (A), CdSe/CdS_1 (C) and CdSe/CdS_2 (E). Relative 

emission spectra of the samples (normalized to the absorption of the excitation wavelength, 

365 nm) before and after the purification for CdSe/CdZnS_2 (B), CdSe/CdS_1 (D) and 

CdSe/CdS_2 (F).  

 

be explained by better isolation of the excitons from the surface traps with a thicker shell. 

Importantly, these changes are brought about in the absence of any change in solvent or 

precipitation of the QDs or introduction of protic or nucleophilic species that are known 

to displace ligands from QD surfaces53,54,95. These well-characterized and isolated QDs 

therefore provide a good model system to study whether the above process is reversible 

and which ligands are responsible for the initial high QY. 

 

3.2.3  QY regeneration by introduction of neutral ligands  

After the purification, the QDs were immediately transferred into a nitrogen-filled 

glovebox to suppress oxidation. According to the NMR spectra recorded before and after 
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the GPC process, the ligands that were removed by GPC include OA, CdOA, OAm, and 

ODE from the olefin-proton-containing group and TOP, TOPO, TDPA, and CdTDPA from 

the phosphorus-containing group. We sought to determine whether reintroduction of these 

species to the system could restore the QY. In order to avoid possible ligand exchange 

reactions, we chose not to include TDPA and CdTDPA among the neutral binders studied 

in this work since phosphonic acid is known to displace oleate from the surface of CdSe 

QDs73. Therefore, we have introduced the first six ligands individually, as well as a mixture 

of TOP and CdOA, back to QD solution with two different ligand-to-QD ratios (300:1 and 

3000:1). The lower number is intended to be roughly comparable to the total number of 

surface sites per QD, while the larger number represents an excess110,116,121. After mixing 

the ligands and the purified QDs for a certain period of time (1 day and 7 days), the QY of 

each of the samples was measured and recorded. The relative QY among QDs with similar 

absorption spectra, emission spectra, and solvent can be measured with high precision, and 

therefore we reported this value. In particular, we measured the QY changes during the 

observation period by comparing each reaction sample to an as-synthesized QD solution 

reference. As shown in Figure 3.6 (left column), the emission intensities of most of the 

GPC-purified QD solutions decreased upon storage in the glovebox for the longer period 

of time, though for sample CdSe/CdZnS_2, the QY increased slightly after 1 day of 

storage. The changes observed in purified samples during storage in dilute solution in the 

absence of ligand addition could be due to slow re-equilibration of the surface-bound 

and/or free metal oleate, and these samples serve as a control for the response to ligand 

addition. 
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We found that reintroduction of selected ligands resulted in a significant increase, 

or “regeneration”, of QY in all samples tested. When we compare the response to 

introduction of the putative ligands, the QY is enhanced when TOP and CdOA are 

introduced in all four samples. The combination of TOP and CdOA always shows the  

Figure 3.6 QY regeneration results with introduction of different ligands. (A-D) The 

relative QY of GPC-purified stock solution and ligand mixing solutions for CdSe/CdZnS_1 

(A), CdSe/CdZnS_2 (B), CdSe/CdS_1 (C), and CdSe/CdS_2 (D). All of the results are 

normalized to the QY of the freshly GPC-purified samples shown with the dashed line. (E) 

Absorption spectra of the GPC purified CdSe/CdZnS_1 QDs mixing with different ligands 

on day 2. Here, the CdOA and TOP mixture is described as binary in short. The labeled 

curves have a 3000:1 ligand-to-QD ratio, while the curves below have a ratio of 300:1. (F) 

Emission spectra during the regeneration process for CdSe/CdZnS_1. The label is a 

combination of the ligand type and ligand-to-QD ratio. The samples are the same as the 

absorption measurements in (E). Both absorption and emission spectra are normalized to 

the lowest energy extinction peaks. Copyright 2015 American Chemical Society. 
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greatest amount of QY regeneration, which indicates that these two ligands are increasing 

the QY in a complementary manner. OAm can regenerate the QY in CdSe/CdS samples 

(especially CdSe/ CdS_1), but the QY did not significantly increase with the presence of 

OA, ODE, or TOPO. For example, as shown in Figure 3.6A, compared to the freshly GPC 

purified CdSe/CdZnS_1 sample, the QY increased 6-fold when the higher amount of TOP 

is introduced and remained at a level close to the initial QY before GPC purification for 

the 7-day measurement period. The binary ligand system shows the highest amount of QY 

regeneration, up to ∼12 times the GPC-purified control at the same time point for 

CdSe/CdZnS_1 (the QY of the GPC stock solution decreased 16% after 1 day of storage). 

The QY regeneration of the thin-shell QDs is much higher than that of the thick-shell 

samples, which mirrors the observation of a smaller decrease in QY after the GPC 

purification. We did not observe a large difference in response to reintroduction at the two 

different ligand-to-QD ratios, which indicates that the surface has been completely 

saturated at the lower concentration of neutral ligands. All the ligands behave similarly for 

CdZnS and CdS shells except when OAm is introduced. When OAm is introduced to 

CdSe/CdZnS QDs, the QY does not increase; however, the QY does increase significantly 

when OAm is added to CdSe/CdS QDs. For CdSe/CdS_1, the response to OAm is close 

to that of TOP. One interpretation of the role of “L-type” ligands in maintaining QY is that 

ligand orbitals mix with interfacial localized states to move them outside of the 

bandgap138,139. In this interpretation, band-edge quantum-confined states are minimally 

affected. CdZnS has a larger bulk band gap than pure CdS, and so the interaction between 

OAm and the surface trap states is not strong enough to move the states outside of this 
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larger shell band gap. The influence of relative binding strength on QY will be further 

addressed below. 

Figure 3.6E and F show the absorption and emission spectra of GPC-purified 

CdSe/CdZnS_1 QDs after mixing with different ligands as described above. An important 

goal of our study is to detect differences in structure and composition between initially 

prepared and purified QD samples that could be responsible for QY changes. Consequently 

it is important to check whether the initial absorption and emission spectra, which did not 

change significantly on purification, are maintained upon reintroduction of putative 

ligands. Both absorption and emission spectra remain constant with the introduction of the 

L-type ligands we investigated; however, in the case of CdOA, which behaves as an 

electrophilic “Z-type” ligand, a significant red shift is observed. We observed similar 

results for pure CdS shell samples (Figure 3.7A, B). This indicates that the decreases in 

QY of the QDs after purification, which occurred without red or blue shift, are more 

directly related to the removal of the L-type ligands (TOP or OAm) than CdOA even 

though a higher coverage of Cd has also been shown to increase the brightness of CdSe 

and CdSe/CdS samples in published reports71,95.  

 

3.2.4  Lifetime analysis by time-resolved fluorescence spectroscopy 

To gain additional insight on possible mechanisms for quenching and restoration 

of QY as a function of ligand concentration, we measured the PL decays of stirred QD 

samples in anhydrous toluene under 368 nm pulsed excitation, which is similar to the 

excitation wavelength we used for the relative QY measurements (365 nm). Since thin-

shell QD samples display a larger response to the introduction of the ligands, we focused 
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on CdSe/CdZnS_1 and CdSe/ CdS_1 samples in this discussion, results shown in Figure 

3.8; the thick-shell QD samples CdSe/CdZnS_2 and CdSe/CdS_2 behaved similarly and 

shown in Figure 3.10.  

Data collected over 200 ns revealed multiple lifetime components (Figure 3.8A, B 

insets), including a long-lived tail with an apparent lifetime of > 50 ns. Previous reports of 

PL decays on QD samples with near-unity absolute QY19,140 and reported decays of single 

QDs in the “on” state100 support a radiative recombination lifetime kr
1 ≈ 20-30 ns for 

 

Figure 3.7 Absorption spectra (A) and emission spectra (B) of the GPC purified 

CdSe/CdS_1 QDs after mixing with different ligands for 1 day. Both absorption and 

emission spectra are normalized at the position of the lowest energy peaks. Lifetime 

analysis by time-resolved fluorescence spectroscopy.  
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CdSe-based QDs similar to those described here. Accordingly lifetime components are 

likely a result of trapping/detrapping processes. In order to focus on the principal reasons 

for changes in ensemble QY, we chose to focus on the first 50 ns, which contain > 90% of 

the light emitted (Figure 3.8A, B). The lifetime curves of the samples mixed with TOPO, 

OAm, and TOP will be compared with the samples before and after the GPC purification. 

Since the introduction of CdOA results in a change in the band-edge electronic structure of 

the sample based on the absorption spectrum, the radiative recombination rate is not 

expected to be the same as in the other samples. Therefore, the lifetime result of CdOA 

cannot be directly compared to the above three ligands (see Figure 3.9A, B). Introduction 

of the ODE control resulted in only small changes in the decay traces (Figure 3.9C). 

In general, the trend of the lifetime results is similar to the observation of the QY 

changes, where the samples with higher QYs have longer average lifetimes. The decays 

shown in Figure 3.8A, B show a relatively constant slope of the logarithm of intensity with 

respect to time in a window of ∼20-50 ns, and this slope was similar among samples with 

different ensemble QYs. However, samples with lower QYs displayed significantly greater 

intensity loss within the first 10 ns. This trend is more clearly apparent when the decay 

traces are normalized at 30 ns to emphasize differences in decay rate at earlier times 

(Figure 3.8C, D and insets therein). After GPC purification, QY regeneration (as observed 

upon introduction of TOP in both samples and OAm in CdSe/CdS_1) is accompanied by 

reduction, but not complete elimination, of the accelerated decay at early times. 

Analysis of rate dispersion in ensemble QD samples and time evolution of decay rates in 

single-QD photon counting experiments have supported an interpretation of rate dispersion 

as being primarily or entirely inhomogeneous in QD samples, the result of subpopulations 
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with varying decay rates100,129. Subpopulations with lower QYs are expected to display 

shorter lifetimes because of elevated nonradiative decay rates. In this case, it may be 

possible to constrain models of nonradiative decay by decomposing the observed decays 

into several lifetime components. We employed a reconvolution fit with multiple decay 

lifetimes to analyze the decays within the first 50 ns. Uncertainty in the lifetime values was 

examined with support plane analysis141 (a detailed description of the analysis is available 

in the materials section). With this analysis, the longest lifetime approximates the decay 

seen in the ∼15-25 ns window, while the shorter lifetimes describe the rapid decay seen at 

early times. By analyzing the rates and amplitudes of the lifetime components, we sought 

to distinguish whether quenching in GPC-purified samples and regeneration in ligand-

introduced samples are associated chiefly with changes in lifetime among all lifetime 

components or with changes in the relative population fraction of QDs with different decay 

rates, as assessed from the amplitudes of the short and long lifetime components of the fit. 

In the case of thin alloy shells (Figure 3.8E), we found that a three-component 

lifetime fit was statistically supported by the data, while the bright QD samples with pure 

CdS shell (CdSe/CdS_1 before GPC, with TOP3000 and with OAm3000) required only 

two components (Figure 3.8F). We found that the change in QY between the samples 

before and after GPC, and between GPC and QY regenerated samples, is accompanied by 

a change in the amplitude of the lifetime components, with little change in the lifetime 

value. For example, the amplitude average lifetime of CdSe/CdZnS_1 after the GPC 

purification is 3.77 ns; after mixing with TOP, the lifetime increases to 10.49 ns (we report  
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Figure 3.8 Comparison of fluorescence lifetime decays for CdSe/CdZnS_1 (A) and 

CdSe/CdS_1 (B) core/shell QDs before/after GPC purification and subsequently mixed 

with different ligands, focused on the first 50 ns. Data collected over 200 ns are shown in 

the insets. (C, D) Corresponding lifetime decays normalized at 30 ns; insets show detail. 

Lines are reconvolution fits. (E, F) Charts displaying lifetime values and corresponding  

amplitudes for reconvolution fits of PL decay traces for CdSe/CdZnS_1 (E) and 

CdSe/CdS_1 (F). The weighted amplitudes are represented by the areas of the blue 

squares, while the lifetime values are indicated by red marks at the center of each square. 

Error bars indicate the uncertainty of each lifetime component as obtained by support plane 

analysis with a confidence limit of 90%. (see Table 3.2 for details). 
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Figure 3.9 Fluorescence lifetime decays for CdSe/CdZnS_1 (A) and CdSe/CdS_1 (B) 

core/shell QDs after GPC and further mixed with CdOA. The lifetime decay curves are 

normalized at 30 ns. (C) Lifetime decays for CdSe/CdS_1 after GPC and further mixed 

with ODE. The lifetime decay curves are normalized at 30 ns. Re-convolution fits of the 

corresponding decays are showed in the insets, where the weighted amplitude is 

proportional to the area of blue squares and lifetime value of each component is displayed 

as the red dot at the center of each square. 

 

amplitude average lifetimes because they are nominally proportional to the steady-state 

fluorescence intensity142). The values of the component lifetimes change no more than 

30%, but the amplitude ratio between the shortest and longest lifetime components 

increases by a factor of 6.7. Similar results can be observed in comparing GPC-purified 

QDs to the initial samples prior to GPC (see Table 3.2 for detailed lifetime values and 

exponential amplitudes). Thus, the reduction in QY upon removal of L-type ligands 

appears to be driven primarily by a large increase in decay rate among a subset of the QDs. 

 We can use the PL decay profiles to consider possible models for quenching in 

QDs with vacant L-type ligand sites. One model is to consider each vacant site to contribute 

a similar nonradiative decay rate, in an additive manner116. In this case, the distribution of 

decay rates in the purified samples will reflect the distribution in the number of vacant 

sites per QD. But because each QD presumably contains numerous binding sites for L-

type ligands and nearly all are vacant following GPC purification, it would seem 

improbable that a significant fraction of the purified QDs would have zero vacant sites and 
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thus remain unquenched. We therefore rule this model out. A second model considers a 

stochastic quenching process, such as the formation of charged QDs leading to Auger  

 

Figure 3.10 Comparison of fluorescence lifetime decays for CdSe/CdZnS_2 (A) and 

CdSe/CdS_2 (B) core/shell QDs before/after GPC and further mixed with different ligands 

(TOP, OAm and TOPO), focused on the first 50ns. (C, D) Corresponding lifetime decays 

normalized at 30 ns, emphasizing changes of the fast decay component with different 

ligands. (E,F) Re-convolution fits of the corresponding decays for CdSe/CdZnS_2 (E) and 

CdSe/CdS_2 (F) indicate the number of the exponential components as well as the 

weighted amplitude (area of blue squares) and lifetime value of each component (red dot 

at the center of each square).  
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recombination97,whose probability is tuned by ligand coverage. In this model, ligand 

coverage does not significantly affect the component lifetimes, but rather tunes the 

population fraction that is in a bright or quenched configuration at a given time, in a manner 

analogous to the fluorescence intermittency seen in single-particle studies.143 A third 

possibility is that the most significant changes in QY arise from vacancies at a subset of L-

type ligand binding sites that occur rarely enough that some QDs in the ensemble lack such 

sites and do not experience quenching at low ligand concentration. Measurements that link 

structure and QY among individual QDs144 may be of value in distinguishing among these 

models. Spectroscopic techniques such as transient absorption, upconversion PL decay 

measurements that can more precisely resolve rapid decay processes, and multiple-pulse 

experiments have been applied to the analysis of QD radiative and nonradiative 

decay145,146. It is clear from the results presented here that the ensemble QY, average decay 

rate, and rate dispersion of QDs change in response to ligand concentration. Thus, 

spectroscopic analyses must ideally be performed on samples with well-specified ligand 

populations and concentrations if the results of such studies are to be compared or applied 

to new systems. 

While the results in Figure 3.6 show that QY regeneration upon introduction of 

excess ligands can be maintained over a period of at least a week, we sought to study the 

time evolution of QY and PL decay profiles in greater detail. We focused on the thin-shell 

QD samples with introduction of 3000 equiv. of TOP, a treatment that improved the 

ensemble QY in all cases. As shown in Figure 3.11A and B, the brightness of the QD 

samples can be fully regenerated to the level prior to GPC purification after mixing with 

TOP for 1 h, which suggests that the high QY of the sample before the purification is due 
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to the presence of neutral ligands such as TOP. On the basis of the time evolution of the 

relative QY, the alloy shell sample requires a longer period of time to reach equilibrium; 

in this case the sample at 5 min is only halfway through its full regeneration, whereas at 

5 min the pure CdS shell sample is close to its maximum brightness. The high QY in the 

TOP-introduced CdSe/CdZnS_1 sample can be maintained for 7 days, but there is a 

decrease in QY with the TOP-introduced CdSe/CdS_1 sample after 1 day. As shown in  

 

Table 3.2 Detailed lifetime values and relative population of the reconvolution fits on the 

PL decay curves shown in Figure 3.8E and 3.8F. 

QD sample Ligands Tau1a wt.A1b Tau2a wt.A2b Tau3a wt.A3b Tau_avga 

CdSe/CdZnS_1 

1ppt 0.61 36.92% 4.79 27.63% 15.70 35.45% 7.11 

GPC 0.57 58.22% 3.93 25.94% 15.25 15.84% 3.77 

TOPO 0.43 55.12% 3.61 27.16% 16.22 17.72% 4.09 

OAm 0.54 60.49% 4.37 24.18% 17.11 15.33% 4.01 

TOP 0.70 24.90% 6.16 30.04% 18.78 45.07% 10.49 

CdSe/CdS_1 

1ppt --- --- 5.65 13.59% 18.48 86.41% 16.74 

GPC 0.66 36.34% 5.06 33.92% 17.97 29.75% 7.30 

TOPO 0.91 28.07% 6.21 34.53% 19.08 37.40% 9.54 

OAm --- --- 4.91 24.19% 17.24 75.81% 14.26 

TOP --- --- 4.45 30.32% 17.89 69.69% 13.81 

a Tau is the lifetime component τ shown in the previous lifetime analysis method 

discussion. The unit for each lifetime component is ns.b wt.A is the weighted amplitude. 

Wt.Ai=(Ai/∑A)×100% 
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Figure 3.11 Fluorescence lifetime decays for CdSe/CdZnS_1 (A) and CdSe/CdS_1 (B) 

core/shell QDs after GPC purification, and then mixed with TOP at various time after 

introduction of TOP, normalized at 30 ns. Changes of relative QY are shown as insets. 

Here, the sample before GPC purification is described as “1ppt” in short. (C, D) A re-

convolution fit of the corresponding decays gave the weighted amplitudes (area of blue 

squares) and lifetimes of each component (red marks at the center of each square) for 

CdSe/CdZnS_1 (C) and CdSe/CdS_1 (D) mixed with TOP over time. The uncertainties 

in each lifetime component was obtained by support plane analysis with confidence limit 

of 90%. Copyright 2015 American Chemical Society.  

 

Figure 3.11C and D, the lifetimes of each component for the TOP introduced samples are 

fairly similar at different waiting times. These results are consistent with changes in the 

relative population fraction of QDs with different decay rates driving QY regeneration in 

the GPC-purified samples. 



www.manaraa.com

 

78 

 

3.2.5  Reversibility test of the QY regeneration process 

One concern is whether changes in ligand concentration lead to irreversible 

structural changes in the QDs. To investigate the reversibility of the regeneration process, 

a second round of GPC was used to repurify the QY-regenerated thin-shell QD samples, 

subsequent to introduction of CdOA, TOP, or OAm. By comparing the absorption and 

emission spectra before and after the second purification, we can detect irreversible 

changes in size or shape associated with changes in ligand concentration.  

As shown in the initial QY regeneration results, when CdOA is introduced into both 

CdSe/CdZnS_1 and CdSe/CdS_1 samples, there is a red shift in the absorption spectra. 

As shown in Figure 3.12A, B, they did not shift back after the second GPC purification 

process, which indicates that the regeneration process with CdOA is not reversible. The 

small red shift in the CdSe/CdS_1 sample on introduction of CdOA is analogous to that 

seen when CdOA is used as a Cd precursor in shell growth, but the irreversible nature could 

indicate some surface reconstruction. When CdOA is added to the CdSe/CdZnS_1 sample, 

a larger red shift is observed, and one possible reason is a cation exchange reaction between 

Zn from the shell and CdOA in the solution147–149. To confirm this, purified 

CdSe/CdZnS_1 treated with CdOA solution or pure toluene was precipitated, and the 

supernatant portions of these two samples were digested and characterized by inductively 

coupled plasma-mass spectrometry (ICP-MS). As shown in Figure 3.12C, a much higher 

amount of Zn is observed in solution when CdOA is introduced. The total amount of excess 

Zn detected in the supernatant corresponds to 25.3 % of the Zn equivalents introduced 

during shell synthesis; this suggests that at least 25.3 % of the Zn in the shell has been 

replaced by Cd. One interesting observation is that for GPC-purified CdSe/CdS_1, after 
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treatment with a large excess of CdOA, a subsequent GPC purification found a significant 

portion of the sample to be retained on the GPC column. Interactions between polystyrene  

 

 

Figure 3.12 Reversibility test of CdOA. (A, B) The absorption spectra before and after the 

introduction of CdOA and after the second GPC purification for CdSe/CdS_1 (A) and 

CdSe/ CdZnS_1 (B). (C) ICP-MS analysis of the Zn content in digested supernatant of 

GPC-purified CdSe/CdZnS_1 sample mixed with toluene or with 3000 equiv of CdOA 

solution. Copyright 2015 American Chemical Society. 
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Figure 3.13 Reversibility test of TOP. 31P NMR spectra before (A) and after (B) the 

introduction of TOP and followed by after the second GPC purification (C) of the GPC-

purified CdSe/ CdS_1 QDs. The absorption spectra during the process described above for 

CdSe/CdS_1 (D) and CdSe/CdZnS_1 (E).which showed no shifting of the bandgap 

absorption peaks. Copyright 2015 American Chemical Society. 
 

GPC media and metal-rich samples have been reported in other systems.70 We have 

observed similar results previously when attempting to purify QDs synthesized under 
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highly metal-rich conditions, which is consistent with CdOA adhesion to the CdSe/CdS 

QD surface in the present case. 

 

Figure 3.14 31P NMR spectra before (A) and after (B) the introduction of the mixture of 

TOP and TOPO, and after the 2nd GPC purification (C) for the GPC purified 

CdSe/CdZnS_1 sample. 1H NMR spectra before (D) and after (E) the introduction of 

OAm, and after the 2nd GPC purification (F) for the GPC purified CdSe/CdS_1 sample. 

The marks in (E) indicate the free olefin proton and α-H in the OAm peaks that are removed 

during the 2nd GPC purification process. Absorption (G) and emission (H) spectra during 

the removal of the solvent and redissolution into deuterated solvent of the 2nd GPC purified 

CdSe/CdS_1 sample.  
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On the other hand, Figure 3.13D and E show that, during introduction and removal 

of TOP, both CdSe/CdS and CdSe/CdZnS QD samples maintain their absorption features. 

This suggests that TOP does not change the effective size or size distribution of the 

quantum-confined band-edge states (there is an increase in relative absorption in the UV 

range, which may be associated with changes in higher energy excitations). After the 

second GPC purification, NMR confirms that TOP can once again be completely removed 

from the system and the absorption spectrum remains constant (Figure 3.13A-C and 

Figure 3.14A-C). On the basis of these results, we believe that the regeneration process 

with TOP is reversible. Similar results can also be observed with OAm, where the α-H 

disappeared after the second GPC purification (Figure 3.14D-F). According to the 

emission spectra, the QY decreased after removing TOP by the second GPC purification, 

but it remained higher than the first GPC-purified sample. This result suggests that the 

regeneration process with TOP might not be completely described as a simple adsorption 

reaction and the QD surface may reconstruct with the help of the introduced L-type ligands. 

Previous reports have identified a role of L-type ligands in displacing metal oleate from 

CdSe QD surfaces at high concentration.95 Here, we also attempted to measure the oleate 

population after the second GPC purification, but due to the aggregation of the particles 

during the phase change process when switching to deuterated solvent, we were unable to 

obtain consistent results based on NMR and absorption spectra. 

 

3.2.6  Isothermal titration calorimetry of ligand addition  

On the basis of our results above, as well as previous literature reports, L-type 

ligands (including TOP, TOPO, and OAm) can reversibly attach to and detach from the 
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QD surface106,110. However, as shown in our regeneration and lifetime studies, not all of 

these ligands contribute equally to the photo-physical property changes in QDs. Ligand/ 

QD interaction is known to influence the energy levels and occupation of interfacial states, 

affecting electron and hole trapping rates and intraband decay rates. The effect of a certain 

total ligand concentration will depend on the adsorption isotherm and on the effect of such 

binding on the interfacial states. It is desirable to have an independent measurement of the 

extent of binding so that these factors can be distinguished. NMR has proven to be a 

powerful technique for the determination of the interactions between ligands and the 

nanocrystal surface. Diffusion-ordered NMR analysis (DOSY) has been employed 

specifically to characterize the bound and free ligand population on QDs in previous 

work74,111. However, in this study, we did not observe any significant difference in 

diffusion constant measured by DOSY (Figure 3.15), T1 measurement on 31P, or NOE 

response on 1H spectra with selective saturation on the 31P resonance (data not shown) upon 

introduction of GPC-purified QDs to TOP or TOPO solutions. Both behaved similarly to 

free ligand controls in these NMR experiments. These results suggest a fast dynamic 

adsorption/desorption equilibrium, where the bound ligands are exchanging rapidly with 

the excess of unbound ligands in the solution.150 Therefore, we employed isothermal 

titration calorimetry to detect and characterize the binding between the neutral ligands and 

QDs. Although widely used in biochemistry, ITC has only recently begun to be applied to 

nanoparticles to assign parameters for multiple binding problems.151 In this study, we 

titrated the same amount of TOPO, OAm, and TOP to the GPC purified CdSe/CdZnS_1 

sample to measure the heat response. Any response of the system as equilibrium is re-

established that has nonzero enthalpy change, such as bond formation upon ligand binding, 
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will generate a heat response. The shape of the heat response over the course of the titration 

can be used to characterize the equilibrium constant and stoichiometry of reactions, while 

the sign and magnitude of the signal characterize the associated enthalpy change. Due to 

the intolerance of the machine toward toluene, anhydrous tetrahydrofuran (THF) has been 

used as the solvent for this study.  

 

Figure 3.15 DOSY spectra on 31P of free TOP/TOPO (left) and TOP/TOPO mixing with 

CdSe/CdZnS_1 sample with a 300 ligand-to-QD ratio (right). Neither TOP nor TOPO can 

be distinguished from free ligands after mixing with QDs, where the diffusion constant of 

TOP is 9.3×10−10 m2/s and TOPO is 8.6×10−10 m2/s. The diffusion constant of QD is 

1.9×10−10 m2/s based on the DOSY measurement of the olefin proton. The diffusion 

constant of the solvent toluene is 2.4×10−9 m2/s.  

 

 

As shown in Figure 3.16, when TOPO is titrated, the overall heat response is small 

and no trend can be observed in the integrated curve, which indicates that there is no 

significant binding between TOPO and the QDs at these concentrations. The ITC trace for 

introduction of OAm shows a small exothermic response at low ligand concentration that 

rapidly saturates. This rapid saturation indicates a high association equilibrium constant. 

The thermogram was fit with the simple independent identical sites model by varying the 

number of sites per QD N, equilibrium constant K, and molar enthalpy change ΔH. The 

best fit was obtained when the number of sites is close to 10, with K = 2.3 × 104 M-1 and 
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ΔH = 27 kcal/mol. However, since the magnitude of the equilibrium constant K is small 

and the QD concentration is low, the molar enthalpy changes ΔH and the number of sites 

N are correlated in the fit. In particular, the shape of heat response curves within this model 

are parametrized by Brandt's c parameter (c = [QD]KN, [QD] is the concentration of the 

QDs). For data that are characterized by c values smaller than 1 (indicating a small mole 

fraction of bound ligands out of the total added), the enthalpy change and the number of 

sites are correlated, but the equilibrium constant K is well constrained. When TOP is 

introduced, there is a much greater exothermic response than for the reaction with OAm 

(an overall exothermic heat approximately 14 times more than that of OAm). The greater 

heat indicates that TOP has a more negative molar enthalpy of binding and/or binds to a 

greater number of sites per QD than does OAm. As seen in the PL response during QY 

regeneration, slower kinetics are also observed in the raw heat signal, which does not 

rapidly return to baseline between injections when TOP is introduced to the 

CdSe/CdZnS_1 QDs. The thermogram for TOP cannot be well-fit by a simple independent 

identical sites model. In order to compare the results for TOP and for OAm, one approach 

is to consider the difference in ΔH and K that would be required if the number of binding 

sites per QD is considered to be the same. In this case a fit with N fixed to 10 reveals 

ΔHTOP_QD/ΔHOAm_QD = 37 and K = 4.3×103 M-1 for TOP. 

Despite an apparently larger equilibrium constant for OAm than for TOP, 

introduction of OAm leads to much less change in QY than TOP, particularly in alloy shell 

QDs. This could indicate that the ITC signal for OAm corresponds to binding to only a 

subset of active trapping/quenching sites or that binding of OAm does not sufficiently 

perturb the energy levels associated with trapping and recombination. However, due to the 
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Figure 3.16 ITC traces for CdSe/CdZnS_1 titrated with TOPO (A), OAm (B) and TOP 

(C) at the same concentrations. Top panel displays the raw heat per injection, while bottom 

panel shows the integrated curves adjusted to the scale for the TOP titration. Insets in 

bottom panels (A) and (B) show zoomed in integrated curves for TOPO and OAm 

titrations, respectively. Ligand-to-solvent reference titrations have been subtracted from 

the traces shown; solvent-to-solvent and solvent-to-QD runs gave negligible responses. 

Copyright 2015 American Chemical Society. 

 

steric and electronic differences between these molecules, it is highly possible that OAm 

and TOP bind to different sites on the QD and the number of sites is not the same. The 

trends we observed in ligand binding strength are consistent with those predicted in 

Rempel's work for ligands binding to the Se-terminated (0001) surface of wurtzite CdSe.152 

The theoretical value of the binding energy between TOP to wurzite CdS S-terminated 

(0001) surface is 3.13 eV.153 If we assume the binding behavior of TOP to the CdZnS alloy 

shell surface is similar to that for pure CdS, then the total heat response that we observe of 

about 200 eV/QD (obtained by integrating the response shown in Figure 3.16C) 

corresponds to about 60 available sites for TOP per QD. We believe that a more adequate 

model accounting for interactions among similar and dissimilar ligands is needed to 

describe such ligand association, dissociation, and exchange reactions more thoroughly, 
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and this could be an important target for future studies. Nevertheless, it seems reasonable 

to argue, particularly for ligands behaving as σ donors, that a strongly exothermic bond-

forming step, leading to a large energy separation between bonding and antibonding 

orbitals, could assist in displacing electron traps from within the band gap. The trend of 

enthalpy change and QY regeneration that we observe supports this argument. 

 

3.2.7  Conclusion 

The maintenance of high PL QY is important to applications of QDs in lighting and 

displays, bio-imaging, and luminescent solar concentrators. In optoelectronic devices such 

as solar cells it is likewise important to passivate interfaces in such a way as to limit non-

radiative recombination. Surface-adsorbed molecules (ligands) play at least two roles in 

the behavior of colloidal QDs: they maintain solubility and suppress aggregation, and 

except in QDs with very thick shells they are responsible for defining the electronic 

boundaries of the quantum well. In this study we used GPC purification to provide a well-

defined initial state for association of neutral ligands to vacant sites. We have demonstrated 

that the decrease in QY observed on purification of QDs can be simply a result of ligand 

removal and is not necessarily due to irreversible changes or “damage” to the QD surface. 

Among the components of the CdSe-based core/shell samples tested here, the QY appears 

to be most critically affected by the loss of phosphine ligands on purification, because 

reintroduction of phosphine led to near-complete regeneration of QY with little change in 

absorption spectrum. In contrast, phosphine oxide and free carboxylic acid had a minimal 

effect on QY, and the primary amine showed significant QY regeneration only in the case 

of pure CdS shells. Introduction of Cd carboxylate equivalents led to a large increase in 
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QY in a manner complementary to phosphine, but was also associated with irreversible 

structural changes. 

Time-resolved PL allows us to conclude that the reduction and regeneration in QY 

are not experienced uniformly among the QDs in the ensemble, but are rather associated 

with the changes in the relative populations between a subset with lifetime comparable to 

the radiative lifetime and a subset with significantly shorter lifetimes. A simple model of 

quenching by a binomially distributed number of recombination centers appears to be 

insufficient to describe the role of vacant sites in limiting QY. 

We also show that ITC, a technique that does not require specific nuclei as 

spectroscopic probes or deuterated solvents, can be used to measure ligand interactions 

with QDs with nonzero molar enthalpy of binding. We expect ITC to become a versatile 

tool for studying ligand binding and interactions on nanoparticle surfaces. Due to its 

sensitivity, ITC does require a well-controlled reaction system, and it is important to 

identify purification methods and sample metrics that can ensure repeatable results for 

compound semiconductor nanocrystals. 

 

3.2.8  Materials 

The following chemicals were used as received. Cadmium oxide (CdO; 99.999%), 

Zinc oxide (ZnO; 99.999%), Trioctylphosphine (TOP; 97%) and Trioctylphosphine oxide 

(TOPO; 99%) were purchased from STREM Chemicals. Oleic Acid (OA; 99%), 1-

Octadecene (ODE; 90% technical grade), and Selenium (Se; 99.999%) were purchased 

from Alfa Aesar. 1-Tetradecylphosphonic Acid (TDPA; >99%) was purchased from PCI 

synthesis. Bio-Beads S-X1 GPC medium was obtained from Bio-Rad Laboratories. 

Toluene-d8 (D, 99.5%) was obtained from Cambridge Isotope Laboratories. Decylamine 
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(95%) was purchased from Sigma Aldrich. Oleylamine (80-90%) and 

Bis(trimethylsilyl)sulfide ((TMS)2S; 95%) were purchased from Acros Organics. 

Rhodamine 590 chloride (R590, MW 464.98) was obtained from Exciton. Toluene (99.5%) 

and Tetrahydrofuran (THF, 99%) were purchased from Mallinckrodt Chemicals. 200 Proof 

Ethyl Alcohol (Ethanol) was obtained from Decon Laboratories. Acetone (99.9%) was 

purchased from VWR. Methanol (99.9%) was purchased from Fisher Scientific. Toluene 

was dried with activated 4A molecular sieves. THF was dried using the Puresolv system 

from Innovative Technologies. Synthetic or analytical procedures under inert conditions 

were carried out using Schlenk line techniques, in a glovebox, under N2 atmosphere. 

Optical spectroscopy. The optical absorption spectrum was recorded using a 

Thermo Scientific Evolution Array UV-Visible Spectrophotometer with toluene as the 

solvent as well as the blank in a 1cm path quartz cuvette. Routine emission spectra were 

recorded by an Ocean Optics USB 4000 spectrometer under ~365 nm excitation. 

NMR analysis of QDs. Routine NMR samples of the QDs were prepared in 

toluene-d8. The QDs’ concentration is set at approximately 20 μM; the exact value in each 

case was measured by UV-Vis using the calculated molar extinction coefficient. The 

spectra were recorded on Bruker Avance III 400. The quantitative 1H NMR spectra were 

measured with ferrocene as the internal standard and 30 s relaxation delay, allowing the 

system to reach a reliable equilibrium. The 31P NMR spectra of QD samples were measured 

with 512 scans to increase the signal-to-noise ratio. T1 is measured by the vendor-supplied 

inversion recovery pulse sequence experiment. Diffusion measurements and NOE 

difference measurements on 1H spectra with selective saturation on the 31P resonance were 

performed Bruker Avance III HD 400 and analyzed by the Topspin version 3.2 software.  
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Synthesis of CdSe QDs. The CdSe cores were prepared by a hot-injection method3 

using cadmium tetradecylphosphonate as the Cd precursor, trioctylphosphine selenide as 

the Se precursor and a mixture of TOP and TOPO as the solvent. The two precursors were 

mixed at high temperature (350 to 365 °C) and cooled down with an air blower 

immediately after the injection. The lowest energy absorption peak for the CdSe cores used 

to prepare the CdSe/CdZnS samples was at 509 nm, while that of the CdSe cores used for 

the CdSe/CdS sample was at 522 nm.  

CdZnS and CdS overcoating. Shells were grown using a selective ionic layer 

adhesion reaction (SILAR) method described previously. Briefly, a portion of as-

synthesized CdSe cores was flocculated by methanol and acetone. After decanting the 

supernatant, the QDs were redissolved into hexane and stored in the freezer (4 °C) for more 

than 12 hours. All the undissolved materials were removed by centrifugation and the 

sample was precipitated again by an addition of methanol and acetone. Afterward, the QDs 

were brought into a measured volume of hexane. The UV-Vis absorption spectrum was 

recorded at a known dilution of the sample to determine the size and quantity of QDs. The 

solution of QDs in hexane was transferred to a solvent of 1:2 oleylamine:ODE (v/v, 9 mL 

total) and degassed at 100 °C to remove hexane. Before the addition of the reagent via 

syringe pump, the system was heated to 200 °C under nitrogen. For the pure CdS shell 

growth, the Cd precursor is prepared by diluting 0.2 M Cd(oleate)2 in ODE with 2 

equivalents of decylamine and  a volume of TOP to yield a concentration of 0.1 M. For the 

CdZnS alloy shell growth, the metal precursor is prepared similarly to the pure Cd 

precursor but using a mixture of Cd(oleate)2 and Zn(oleate)2 (the ratio of Cd:Zn is 3:7) to 

yield a metal concentration of 0.1 M. The S precursor was always a 0.1 M solution of 
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(TMS)2S in TOP. The volume increase associated with 1 monolayer coverage in both cases 

is calculated based on the radius increase of 3.37 Å, which is the half of the wurtzite c-axis 

unit cell dimensions for CdS. Alternating injections of metal precursor and sulfur precursor 

were performed, adding the metal precursor solution first, with injections starting every 

15 minutes for CdS shell and 20 minutes for CdZnS shell. The flow rate was adjusted to 

complete each injection over the course of 3 minutes. The volume of each injection was 

calculated to apply 0.8 monolayers coverage each cycle (a cycle is defined as one metal 

precursor injection and one sulfur precursor injection). For the thin shell samples 

(CdSe/CdS_1 and CdSe/CdZnS_1), two cycles were performed while five cycles were 

added to the thick shell samples (CdSe/CdS_2 and CdSe/CdZnS_2). The growth 

processes were monitored by both UV-Vis absorption and fluorescence spectrometers. 

After the reaction, the mixture was cooled down to the room temperature and the molar 

extinction coefficient was estimated based on the amount of the core introduced at the 

beginning and the total volume of the solution after the synthesis. 

Absolute quantum yield measurement. The absolute QY of QD samples was 

assigned by comparison to a rhodamine 590 standard (R590, QY= 99% in ethanol154,155). 

Fluorescence spectra of QD and R590 dye were taken under identical spectrometer 

conditions on a Varian fluorescence spectrometer in triplicate and averaged. The optical 

density was kept below 0.1 from the excitation wavelength to 800 nm to avoid internal 

filtering effects. The QY was calculated based on the integrated intensities of the emission 

spectra, the absorption at the excitation wavelength and the refraction index of the solvent 

using the equation: 

QYQDs = QYdye ∗
Absorbancedye

AbsorbanceQDs
∗

Emission integralQDs

Emission integraldye
∗

Refraction indextoluene
2

Refraction indexethanol
2  
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The precision of this measurement in our case is limited by the precision of the absorbance 

measurement (~1%) while the accuracy among samples in different solvents will be limited 

by the accuracy of the refractive index correction term. 

GPC purification of the QDs. The GPC column was packed by as previously 

described6 with toluene as the eluent. The as-synthesized core/shell QDs were purified by 

1 cycle of precipitation with acetone only and redissolution in toluene. Then the QD 

solution was added to the column and the sample was collected when the elution volume 

equaled ~1/3 of the total volume of the column (the expected void volume for irregularly 

spaced spherical beads); this volume corresponds to the fraction at which the purified QDs 

eluted. The GPC column was rinsed thoroughly (3 times the total volume of the column) 

between runs. 

Preparation of pure Cd oleate. The cadmium oleate used as a ligand in the 

regeneration study was prepared as follows. CdO and oleic acid were introduced to a three 

neck flask (the ratio of CdO: OA is 1:5), where OA was used as both acid and solvent. The 

mixture was degassed and then heated to 270 °C under N2 to form a colorless and clear 

solution. Then the sample was cooled and transferred to a refrigerator (4 °C) to allow the 

product to precipitate. Excess oleic acid was separated by filtration and the insoluble 

Cd(oleate)2 was washed with ethanol 5× to remove the remaining oleic acid. FTIR and 1H 

NMR has been used to confirm the removal of oleic acid. 

Quantum yield regeneration and relative quantum yield measurement. After 

GPC purification, the QD samples were transferred into sealed N2 environment and 

pumped into glove box immediately to avoid any possible oxidation. The ligand solutions 

are also prepared in the glove box. For the regeneration process, the concentration of the 
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QD samples are fixed to be 0.5 µM and the ligand concentration is controlled to be 1.5 mM 

or 0.15 mM to provide two different ligand-to-QD ratios (1:3000 and 1:300). The total 

volume of the mixing solutions is 1 mL and the solutions were kept gently stirring for the 

7 day measurement period. The relative QY is characterized by diluting a portion of the 

above solutions into dry toluene and measuring the absorption and emission spectra. The 

optical densities of the sample solutions were kept below 0.1 at wavelengths above the 

365 nm excitation wavelength to avoid internal filtering effects. The relative QY is 

calculated by comparing the integration the emission spectrum divided by the absorption 

at 365 nm. 

Time-resolved photoluminescence measurement. The PL decays of QDs in 

toluene were collected in front-face mode with 1 cm quartz cuvette in a lifetime 

spectrometer (Edinburgh Mini-τ) equipped with a 368 nm picosecond-pulsed-light-

emitting diode. A stirring stage was set under the Mini-τ and a mini stirring bar was placed 

in the cuvette to stir the QD solution to avoid accumulation of photo-products during the 

measurement. The instrument response function (IRF) is recorded using Rayleigh 

scattering of pure water. 

Analysis of photoluminescence decay lifetimes. Analysis follows the methods 

described in Principles of Fluorescence Spectroscopy by Lakowicz,J.R.  The PL decays 

were fit with a multi-exponential function re-convoluted with the recorded instrument 

response function (IRF). For example, if the decay was fit with a tri-exponential function, 

then:  
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where I(t) represents the intensity at time t, and τi and Ai are the exponential lifetime and 

amplitude, respectively, of decay component i. 

The amplitude average PL lifetimes were calculated based on Equation 9. 
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The goodness of the fit is determined by nonlinear least-squares analysis (NLLS) which 

tests whether the fit is consistent with the raw data and to obtain the lifetimes and 

amplitudes for the fit that provide the best match between the measured raw data,  ktN , 

and the calculated decay,  kc tN , where N represents the discrete sequence of intensities 

measured at times tk and k is an index. A reduced 2

R is then minimized to find the best-

matched fit:   
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where pn , is the number of degrees of freedom, n is the number of data-points, 

and p is the number of floating parameters. The reduced 2

R is minimized for all the lifetime 

decay fits. 

Support plane analysis was applied to obtain the uncertainty in the lifetime for each 

exponential component. The procedure is to change one lifetime 
i (i=1~3) from its value 

where 2

R is at a minimum, 2

min,R , to one of a series of possible lifetimes with offsets
k  

(
ki   ).  Then, we re-run the least-squares fit, keeping 

ki   constant, to minimize 

2

R again to
2

, parR  . The confidence probability was judged by the 
F statistic:  

pn
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where  PpF ,,  is the F statistic with p parameters and   degrees of freedom with a 

probability P that 
F is due to random errors in the data. In this work, the uncertainty in 

the lifetime is obtained using P= 10%, suggesting there is less than 10% probability that 

F is due to random error, in other words a 90% confidence limit. Confidence limits were 

calculated for decays illustrated in the preceding narrative. 

Reversibility test. CdSe/CdZnS_1 and CdSe/CdS_1. QD samples are purified by 

GPC and mixed with 3000 equivalents of ligand. After stirring inside the glovebox for 

1 day, the mixtures are purified again by GPC. Absorption and emission spectra are 

monitored during the process.   

Inductively coupled plasma-mass spectrometry analysis. Two samples were 

prepared. One is made by diluting 1 nmol of GPC purified CdSe/CdZnS_1 QDs in 0.5 mL 

toluene; the other by mixing 1 nmol of the same QD sample with 3 µmol CdOA (3000:1 

ratio) in 0.5 mL toluene. After stirring under N2 overnight, these two samples were 

precipitated by acetone and the supernatants were transferred evacuated to dryness. 1 mL 

aqua regia was introduced and was allowed to digest the sample for 2 h. Then the solutions 

were brought to 50 mL in a volumetric flask with 2% HNO3 in water. The concentrations 

of Zn were detected by a Thermo-Finnigan Element XR ICP-MS. 

Isothermal titration calorimetry. Isothermal titration calorimetry (ITC) 

experiments were performed on a VP-ITC calorimeter (Microcal Inc., Northampton, MA). 

Ligand solutions were titrated from the 300 μL injection syringe to the sample cell loaded 

to its 1.8 mL filling capacity, and the heat response to maintain a constant temperature 

http://www.chem.sc.edu/mslab/icp.html
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between the sample cell and reference was monitored. The sample cell was purged with 

nitrogen before loading the GPC purified QD solution to minimize the influence of the 

oxidation reactions. Each experiment was conducted at 22 °C and midrange reference 

power; allowed to equilibrate prior to an initial 600 seconds delay; and in order to allow 

adequate equilibration between each injection, 8-9 min intervals were set between each 

injection for a total 60 injections in 5 μL increments. Dry THF was chosen as the solvent 

for both the ligands and QDs, as well as the blank solvent in the reference cell. Reference 

titrations were conducted to determine any significant heat of dilution between the solvent, 

ligand solution and QD solutions that may have accounted for signal in the final ligand-

QD titrations. Only ligand-solvent reference titrations were subtracted from ligand-QD 

titrations, as other reference titrations were determined negligible. The QD solutions loaded 

in the sample cell were 0.5 µM (same as for QY regeneration) and ligand solutions loaded 

in the syringe were 1.5 mM. 

 

3.3 Reducing competition by coordinating solvent promotes morphological 

control in alternating layer growth of CdSe/CdS core/shell quantum dots 

3.3.1 Introduction  

The formation of core/shell structures in colloidal semiconductor nanocrystals is 

important in maintaining the spectroscopic properties of colloidal quantum dots (QDs) and 

defining new functions. When using selective ionic layer adhesion and reaction (SILAR) 

based techniques, conversion of shell precursors to surface-adsorbed equivalents should be 

maximized for effective control of shell growth. Our group has previously demonstrated 

that the commonly used cadmium precursor Cd(oleate)2 has low conversion yield when 
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added in monolayer-equivalent quantities during the growth of CdSe/CdS core/shell QDs 

via the SILAR technique20. The growth solvent could potentially play an important role in 

governing precursor conversion, in particular by controlling precursor solubility and 

through competition for nanocrystal surface sites. Primary amines such as 

oleylamine19,23,99, octadecylamine18,27 and hexadecylamine156 have long been used as 

coordinating solvents for nanocrystal growth, with oleylamine a common choice for shell 

growth on CdSe QDs by SILAR19,20. 

 The role of the primary amine in the nanocrystal growth has been studied 

extensively and there have been contradictory conclusions, which have recently been well 

summarized by Garcia-Rodriguez et al157. Additionally, Hollingsworth’s and Vela’s 

groups have reported that switching to a secondary amine (dioctylamine) improved the 

synthetic yield when growing CdS shells on CdSe QDs, especially for larger shell 

thicknesses23,158. Foos et al. have shown that the use of secondary and tertiary amines can 

result in an improved size distribution during growth of CdSe nanocrystals.159 One possible 

mechanism is that the reactivity of the Cd precursor was reduced due to the strong 

coordination of the primary amine. Liu’s and Vela’s groups have suggested that primary 

amines such as oleylamine may stabilize Cd(oleate)2 in solution through the formation of 

six-coordinate complexes157,158. Solution-phase complexes could be sterically restricted in 

the case of secondary or tertiary amines. However, as shown previously, amines can 

improve the fluorescence quantum yield by coordination to the nanocrystal surface55,106 

and it is possible that such surface coordination is competing with precursor conversion as 

well. 
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 In this work, we grew CdSe/CdS core/shell quantum dots in solvent mixtures with 

three different representative amines—primary, secondary, and tertiary—via a SILAR 

technique. We selected oleylamine (OAM), dioctylamine (DOM) and trihexylamine 

(THM) for our studies. The three amines were chosen to 1) represent 

primary/secondary/tertiary amines; and 2) have similar molecular weight and molar 

volume, so that similar amine:QD ratios (~50000:1) could be achieved at similar QD 

concentrations. The course of the growth was monitored by UV-Vis absorption and 

photoluminescence (PL) emission spectroscopy. Emission peaks at wavelengths shorter 

than the effective band-gap (“blue peaks”) appeared in the PL spectrum when QDs were 

grown in primary amine, suggesting nucleation of small CdS particles as a result of cross-

reaction of the shell precursors as seen previously, and such nucleation was suppressed and 

no CdS particles were present in the QDs grown in tertiary amine. Scanning transmission 

electron microscopy (STEM) proved the yield of the shell was highest when using the 

tertiary amine (trihexylamine) as the growth solvent. In order to explain these observations, 

proton NMR was applied to understand the interaction of different amines with the CdSe 

surface. We demonstrated that the interaction between the solvent molecules and the 

nanoparticle surface is an issue influencing shell growth by SILAR, since the shell 

precursor must compete with such interactions in order to saturate the surface prior to 

introduction of the complementary precursor for growth of the shell compound. 

 

3.3.2 Shell growth as monitored by absorption and emission spectroscopies 

During the course of the growth, aliquots with a consistent volume of 50±5 μL were 

drawn and diluted in 2.0±0.2 mL of hexane for monitoring by absorption and PL 
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spectroscopy. This method resulted in diluted samples with < 25% error in concentration. 

The nominal concentration of core/shell particles in each aliquot can be calculated based 

on the quantity of cores introduced at the start of the reaction; the nominal concentration 

decreases over the course of shell growth due to the increase in total volume as shell 

precursor solutions are introduced. The band-edge absorbance peak of all aliquots 

remained less than 0.1 AU such that little fluorescence light is re-absorbed when the 

samples are excited. Absorption and PL spectra of core/shell particles grown in the three 

amines are shown in Figure 3.17. To facilitate comparison, the absorption and PL spectra 

of successive aliquots have been scaled to compensate for the difference in nominal 

concentration of core/shell particles. In particular, the absorbance and intensity values 

plotted should be representative of the signals seen at the same QD concentration (0.42 

μM), with a scaling error of less than 25%. In all three shell growth experiments, the 

absorption spectra indicate a red shift in the lowest-energy (1S) exciton resonance is 

observed with increasing shell thickness, accompanied by an increase in the height of the 

scaled 1S absorbance. An increase in the 1S molar extinction coefficient with increasing 

size of CdSe QDs has been described and modeled by Jasieniak et al160. The trend for the 

same model applied to the evolution of the 1S absorbance in the CdSe/CdS core/shell 

particles is indicated by the black curves in Figure 3.17A-C, with 25% error indicated by 

dashed lines. 

Figure 3.17D-F shows that in all three growths, the PL emission intensity of 

CdSe/CdS core/shell particles continuously increased with increasing CdS shell thickness; 

this is a result of an increasing quantum yield as well as an increasing excitation rate at the 

same concentration due to enhanced absorption at short wavelengths due to the CdS shell. 
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Figure 3.17 Scaled absorption and emission spectra over the course of CdSe/CdS 

core/shell QDs growth in three amines. (A, D) CdSe/CdS_OAM grown in oleylamine; (B, 

E) CdSe/CdS_DOM grown in dioctylamine; (C, F) CdSe/CdS_THM grown in 

trihexylamine; Absorptions and emissions are normalized to the concentration of QDs in 

each aliquot, so that all the absorption and emission represent the absorption and intensity 

of the same amount of QDs, the dash lines represent the upper and lower band of 25% error 

for the QD concentration in each aliquot. The insets zoomed in the region of emission 

where “blue-peaks” appeared for CdSe/CdS_OAM and CdSe/CdS_DOM, and no “blue-

peaks” in CdSe/CdS_THM. Copyright 2015 American Chemical Society. 

 

Despite superficially similar absorption spectra and band-edge PL spectra among the three 

samples, a close examination of the emission spectra reveals a PL peak appearing between 

400-500 nm (“blue peak”) that is present in the oleylamine case (Figure 3.17D), greatly 

diminished (~50× less intense) with dioctylamine, and nearly absent with trihexylamine. 

The blue peaks are absent prior to introduction of shell precursors, are centered at 

wavelengths shorter than the emission of the CdSe cores used, and shift to longer 

wavelengths as additional shell precursors are introduced. These characteristics are all 

consistent with the appearance of a CdS nanoparticle side product. The wavelengths of the 
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blue peaks fall within the range of emissions for CdS nanoparticles with diameters 3.5-4.5 

nm161,162. 

3.3.3 STEM images of the core/shell QDs grown in three amines 

In order to support the above hypothesis that the blue peaks are PL from a CdS 

nanoparticle side product that is abundant in the case of oleylamine, scanning transmission 

electron microscopy (STEM) has been used to record the images from CdSe cores as well 

as the three core/shell products prepared in three different solvents. As shown in Figure 

3.18, the radius histograms are determined by analysis of STEM images of the same 

magnification at 6-7 randomly selected regions; N is the number of particles analyzed. In 

comparing STEM images Figure3.18A-D and the radius histograms Figure 3.18E-H, the 

differences in particle sizes and distributions are clearly displayed. We characterize the 

average radius and peak radius for particles; the average radius is obtained directly from 

the distribution (including small particles), while the peak radius is the center of a Gaussian 

fit (red curve, Figure 3.18E-H) to the distribution and represents a characteristic radius for 

core/shell particles in the sample. 

A majority of particles in the core/shell samples showed a radius larger than that of 

the cores and commensurate with shell growth; however, CdSe/CdS_DOM (Figure 3.18C) 

and CdSe/CdS_THM (Figure 3.18D) showed larger average and peak radius as compared 

to CdSe/CdS_OAM (Figure 3.18B). Additionally, both CdSe/CdS_DOM and 

CdSe/CdS_THM showed narrower size distributions and showed particles with more 

uniform shapes. Inspection of the STEM images reveals the presence of a significant 

number of particles smaller than the CdSe cores in CdSe/CdS_OAM. Although the STEM 

images cannot clearly resolve CdS from CdSe, we can assign the smallest particles as a 
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CdS nanoparticle side product. These small particles contribute to the smaller average 

radius in this sample. The peak radius primarily describes the core/shell product; it is the 

smallest in CdSe/CdS_OAM as well, indicative of thinner CdS shells due to loss of material 

to the side product.  

 

Figure 3.18 STEM images and radius histograms for CdSe cores (A,E) and core/shell 

samples CdSe/CdS_OAM (B, F), CdSe/CdS_DOM (C, G), and CdSe/CdS_THM (D, H). 

The histograms are fitted by Gaussian functions (red curves, E-H) to determine the peak 

radius; the FWHM is indicated by blue arrows. Copyright 2015 American Chemical 

Society. 

At the same time, the distribution of radius for CdSe/CdS_OAM (fwhm = 0.93 nm) 

is broader than that for CdSe/CdS_DOM (fwhm = 0.74 nm) and CdSe/CdS_THM (fwhm 

= 0.43 nm). Core/ shell particles growing in trihexylamine maintained a very narrow size 

distribution, nearly as good as the cores (fwhm = 0.30 nm), although a small fraction of 

particles with radius down to 2.5 nm (Figure 3.18H) remained present. The STEM results 

confirm that the more highly substituted amines dioctylamine and especially trihexylamine 

were effective in suppressing the nucleation of small particles during shell growth, and the 

observation of small particles in the CdSe/ CdS_OAM and CdSe/CdS_DOM samples 
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corroborates the assignment of the blue PL peaks as radiative recombination from CdS 

nanoparticles. Examination of the shapes of nanocrystals in the three core/shell samples 

appears to show greater roundness in CdSe/CdS_DOM and CdSe/CdS_THM, suggesting 

that conditions that suppress nucleation also help to enforce isotropic shell growth.  

 

3.3.4 Proton NMR characterization of amine interactions with QD surface 

The results from the optical spectra and STEM images confirm that by using 

different amines as the coordination solvents, the shell formation process varies 

significantly. In order to probe this ligand/nanocrystal interaction directly under mild and 

controlled conditions, we recorded 1H NMR spectra of mixtures of CdSe cores with each 

of the amine solvents diluted in d8-toluene (Figure 3.19). Reference spectra of the amines 

in d8-toluene without QDs were recorded for comparison. The QDs were purified by gel 

permeation chromatography (GPC, toluene/polystyrene) to minimize the impact of any 

impurities and isolate interactions between the amines and the CdSe QD surface. In the 

presence of the QDs, the α-proton and olefin peaks of oleylamine are significantly 

broadened, which is evidence of a strong interaction between oleylamine and the 

nanoparticle surface. In contrast, a mixture of dioctylamine with the CdSe cores shows 

only a small degree of broadening and a small downfield shift, and a mixture of 

trihexylamine with the CdSe cores shows almost no change versus the free molecule. These 

results indicate that the interaction affinities of amines to the nanoparticle surface are in 

the order of oleylamine > dioctylamine > trihexylamine from strong to weak. This implies 

that replacing oleylamine with dioctylamine or trihexylamine in SILAR shell growth 

effectively destabilizes the neutral nanocrystal surface, which facilitates binding of the 
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Cd(oleate)2 precursor independently of differences in solution-phase interactions that may 

also be present. 

 

Figure 3.19 1H NMR for α-proton for the three amines studied in the presence and absence 

of CdSe cores. Solvent is d8-toluene. Copyright 2015 American Chemical Society. 

 

 

3.3.5 Conclusion 

We have confirmed that replacing oleylamine with a secondary amine, 

dioctylamine, suppresses nucleation and improves core/ shell growth, and we have shown 

that moving to a tertiary amine, trihexylamine, is even more effective. We have also shown 

through NMR spectroscopy that the more highly substituted amines bind less strongly to 

the CdSe QD surface and permit greater precursor conversion under experimental 

conditions. On the basis of these results, we can conclude that oleylamine effectively 

competes with the precursor Cd(oleate)2 for occupation of nanocrystal surface sites, 

leading to a significant amount of cross-reaction and nucleation of CdS particles during 

CdS shell growth by SILAR. Studies that separately quantify QD−amine and Cd 
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precursor−amine interactions could be used to differentiate their relative contributions to 

control of precursor conversion and growth.  

3.3.6 Materials 

 The following chemicals were used as received. Cadmium oxide (CdO; 99.999%), 

trioctylphosphine (TOP; 97%), and trioctylphosphine oxide (TOPO; 99%) were purchased 

from Strem Chemicals. Oleic acid (OA; 99%), 1-octadecene (ODE; 90% technical grade), 

1-tetradecylphosphonic acid (TDPA; 98%), and Se (99.999%) were purchased from Alfa 

Aesar. Di-n-octylamine (98%) and tri-n-hexylamine (97%) were purchased from Alfa 

Aesar. Decylamine (95%) was purchased from Sigma-Aldrich. Oleylamine (80−90%) and 

bis(trimethylsilyl) sulfide ((TMS)2S; 95%) were purchased from Acros Organics. Toluene-

d8 (D, 99.5%) was purchased from Cambridge Isotope Laboratories, Inc. 200 proof ethyl 

alcohol (ethanol) was obtained from Decon Laboratories, Inc. Methanol (99.8%) was 

purchased from BDH. Acetone (99.9%) was purchased from VWR. Ethanol (99.9%) was 

purchased from Fisher Scientific. TOPSe (2.2 M) was prepared by dissolving Se in TOP. 

A stock solution of Cd(oleate)2 (0.2 M) in ODE was prepared by heating CdO in ODE with 

2.2 equiv of oleic acid at 260 °C under nitrogen, followed by degassing under vacuum at 

100 °C for 20 min. The sulfur precursor was 0.1 M solution of (TMS)2S dissolved in TOP. 

Nanocrystal core and shell growth was carried out under nitrogen (N2) using Schlenk line 

techniques; air-sensitive reagents were prepared in a nitrogen filled glovebox. 

 Optical Spectroscopy. The optical absorption spectrum was recorded using a 

Thermo Scientific Evolution Array UV−visible spectrophotometer with hexane as the 

solvent as well as the blank in a 1 cm path quartz cuvette. Routine emission spectra were 

recorded by an Ocean Optics USB 4000 spectrometer under ∼365 nm excitation.  
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Synthesis of CdSe Cores. A hot-injection technique was applied for synthesis of 

CdSe nanocrystals (NCs) cores.4 For a representative synthetic route, CdO (0.12 g) was 

heated with TDPA (0.5500 g) at 330 °C in a solvent of TOP (6 mL) and TOPO (6 g) under 

nitrogen flow until the solution became colorless. Following removal of evolved H2O under 

vacuum at 130 °C, the solution was heated again to 360 °C under nitrogen. As-prepared 

TOPSe (1.3 mL) was injected rapidly into the reaction pot, which was immediately allowed 

to cool to room temperature and stored as a yellow waxy solid. The Cd:TDPA:Se molar 

ratio is 1:2:3. The core radius was estimated by a calibration curve describing the radius as 

a function of the position of the lowest-energy absorption peak. One batch of cores 

provided sufficient material for several core/shell growth experiments; all core/shell 

particles were made on the basis of the CdSe QD cores taken from the same batch.  

Synthesis of Core/Shell Nanoparticles in Different Amines. The method for 

CdSe/CdS core/shell particle growth was modified from our previous work. The difference 

was switching different types of amines (oleylamine, dioctylamine, trihexylamine) in the 

solvent mixture. The Cd precursor was prepared by diluting Cd(oleate)2 stock solution in 

a solvent of 50:50 ODE and TOP with 2 equiv of the same amine in the solvent mixture 

(vs Cd) added to yield a Cd concentration of 0.1 M. The sulfur precursor was 0.1 M solution 

of (TMS)2S dissolved in TOP. The CdS shell was grown by alternatively introducing Cd 

and sulfur precursors into the reaction flask, 1 ML equiv of precursors added per cycle, and 

forming 6 ML of CdS shell in total after six cycles. Reaction progress was monitored by 

periodically withdrawing a small aliquot of a measured volume (typically 50 μL) from the 

reaction flask and diluting it in hexanes at room temperature; these aliquots were analyzed 

for UV−vis absorption and fluorescence emission in hexanes solution.  
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Scanning Transmission Electron Microscopy Imaging. After purification, the 

CdSe or CdSe/CdS core/shell QDs were brought into hexane to form a dilute solution (1.1 

μM), and one drop of the solution was drop-casted on a clean TEM grid (400 mesh Cu grid 

with ultrathin carbon support film, Type-A, Ted Pella, Inc.) and pumped dry under vacuum 

for 2 h. The STEM samples were imaged by JEOL 2100F 200 kV FEG-STEM/TEM 

equipped with a CEOS CS corrector on the illumination system. Prior to high magnification 

observation, a large specimen area was preirradiated with electrons for 10 min to 

polymerize surface hydrocarbons and therefore prevent their diffusion to the focused 

probe. High angle annular dark-field (HAADF) STEM images were acquired on a 

Fischione model 3000 HAADF. A pixel dwell time of 16 μs was chosen. 

 

3.4 Conclusion 

As shown in this chapter, the neutral ligands are influencing both the synthesis of the 

core/shell QD samples and later photo-physical performance of the materials. Stronger 

binding ligands tend to assist in displacing electron traps from within the band gap and 

improve the brightness of the QDs; while the weak coordinating ligands open up more sites 

on the surface, allowing better precursor conversion efficiency during the shell growth 

process. This information is important for preparing bio-compatible QDs sample in both 

fabrications of the QDs and design of suitable hydrophilic capping ligands. Future work 

including study the binding strength between different amines and nanocrystals by ITC, 

and detail transient absorption spectroscopy study on the QY regeneration experiments will 

be valuable to better understand the effect of the neutral ligands on the QDs’ properties.
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CHAPTER 4 

FABRICATION OF BIOCOMPATIBLE QDS WITH METHACRYLATE BACKBONE POLYMERIC 

IMIDAZOLE LIGANDS 

4.1 Introduction 

Quantum dots (QDs) are always considered as an attractive candidate in biolabeling 

applications. Compared to typical fluorescent dyes, QDs possess greater excitation cross-

sections and better photo-stability, which is advantageous in imaging over an extended 

time. There are two common strategies to prepare water-soluble QDs, namely direct 

synthesis in aqueous phase and post-surface modification with hydrophilic coatings. 

Mulimani’s group163 and Donegan’s group164 have proposed using thioalkyl acids as the 

stabilizer to prepare CdSe and CdTe QDs in aqueous solution.  However, the water-based 

synthetic routes tend to provide QDs with large size distribution and low quantum yield 

(QY). The other approach is to water-stabilize the QDs prepared in hydrophobic solvents. 

This process has been widely studied and can be grouped into two main strategies: one is 

removal of the native surfactant and replacing them with the hydrophilic ligands, or in short 

ligand exchange; the other approach is encapsulation of the particles with surfactants, silica 

shells, or amphiphilic copolymers91. The encapsulated QDs can maintain their brightness 

and stability in water over an extend period of time, but the hydrodynamic radius of these 

samples is considerably large, which limits their application in the biological system.165–

167 Bio-compatible QDs can also be made via ligand exchange with hydrophilic ligands 
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bearing nucleophilic anchoring groups such as thiol21 and amine2. This strategy has shown 

smaller hydrodynamic radius than is achieved by the encapsulation strategies in which the 

initial ligand coating is retained. 

The most widely studied hydrophilic ligands are thiol based molecules. Bawendi’s 

group has shown that as-synthesized CdSe/CdZnS QDs can be coated with cysteine to form 

a biologically compatible and highly fluorescent probe for imaging21. Mattoussi’s group 

designed water soluble CdSe/ZnS QDs based on surface exchange with dihydrolipoic acid 

(DHLA) for use in immunoassays168. In order to improve the long term stability of the QDs 

in water, several groups have explored using multiply binding (multidentate) polymeric 

ligands instead of traditional mono- and di-thiol based ligands40,41,169. One promising class 

of polymeric ligands utilizes imidazoles as anchoring groups, or often referred to as 

polymeric imidazole ligands (PILs)2.  

 In this chapter, two projects related to PIL capped QDs will be described. The first 

project described here is a simple approach for the preparation of methacrylate backbone 

polymeric imidazole ligands (MA-PILs) with improved control on the composition and 

molecular weight, which can provide robust attachment to the QDs. The polymer is 

prepared by a copolymerization of N-methacryloxysuccinimide (NMS) and poly(ethylene 

glycol) methacrylate (PEGMA), followed by a post-modification to replace the NMS group 

with the histamine. These novel copolymers combine water solubility and robust 

attachment to QDs to provide narrow size distributions and good quantum yields. We have 

also explored the effect of polymer length and monomer composition on its complexation 

to quantum dots and display the utility of these copolymer functional materials through 

excellent dispersions in protic environments. The biocompatibility of these samples has 
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also been evaluated through scalable nonspecific binding and cell viability assays. In the 

second project, I will describe a mild and reproducible method for membrane-enveloped 

virus labeling with QDs. A ternary copolymer version of the MA-PILs that can incorporate 

PEG sidechains for steric stabilization in water, imidazole anchoring groups, as well as 

primary amines that are available for further modification has been used. This polymer has 

been functionalized with dibenzocyclooctyne (DBCO) and then attached to the QDs. We 

labeled the measles virus (MV) envelop with azido groups by incorporating an azide-

bearing azidoethyl-choline (AECho) into the MV phospholipid bilayer via host cells. The 

exchanged QDs (QDs-DBCO) were attached to the azide-labeled MV (N3-MV) through a 

copper-free, strain-promoted azide-alkyne cycloaddition (SPAAC) reaction. The QD-

labeled MV maintains its infectious ability against host Vero cells. 

 

4.2 Preparation of methacrylate backbone polymeric imidazole ligand capped 

quantum dots with low cytotoxicity and low nonspecific binding 

4.2.1 Introduction  

As described previously, PILs have been considered as a promising candidate in 

preparation of bio-compatible QDs. Krull’s group has used such PIL-capped QDs as a 

fluorescence resonance energy transfer (FRET) donor for biosensors170–172; Bawendi’s 

group and Mattoussi’s group have shown that PIL-capped QDs can be used to label cells 

and that brightness can be maintained over an extended time2. Cai’s group has used PIL-

capped QDs to label viruses and shown that the viruses maintain their infectivity both in 

vitro and in vivo41,173. However, these PILs are prepared either by direct modification of  

poly(maleic anhydride), which leaves residual carboxylic acid side chains that may 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ITs-5gsAAAAJ&citation_for_view=ITs-5gsAAAAJ:u-x6o8ySG0sC
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influence the overall charge of QDs after ligand exchange reaction41; or through a boc-

protected histamine based monomer via RAFT polymerization reaction, which  requires 

several synthetic steps, including protection of the imidazole amine for successful RAFT 

polymerization and the corresponding de-protection2 to access the imidazole for quantum 

dot attachment. 

In this work, PILs bearing poly(ethylene glycol) (PEG) side chains were prepared 

using RAFT polymerization. A versatile post-modification strategy using activated ester 

units of NMS and PEGMA in the polymer chain afforded copolymers ranging from 6K to 

50K with low polydispersities, along with tailored composition of each monomer along the 

copolymer chain. By controlling the monomer ratio, PEGMA molecular weight, time, and 

temperature, the composition could be tuned to study its effect on quantum dot 

functionalization. Representative oleate-capped CdSe/CdZnS QDs purified by gel 

permeation chromatography (GPC) method were used to test the effectiveness of the 

histamine-bearing polymers for preparation of water-soluble QDs. Successful ligand 

exchange of the QDs was characterized by good dispersions in water, lack of aggregation 

between QDs, and good quantum yields in water. The nonspecific binding and toxicity of 

the QDs toward human endothelial cells have also been characterized. The result illustrates 

the potential of methacrylate-based polymeric ligands to form bio-compatible nanocrystals 

for targeting and sensing applications.  

 

4.2.2  Preparation of MA-PILs 

MA-PILs were prepared by Dr. Anand Viswanath from Dr. Brian Benicewicz’s 

group in the Chemistry Department here at USC. The synthetic procedure can be described 
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into three steps. In the first step, NMS and PEGMA were copolymerized in DMF with 4-

cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (CDTPA) as the RAFT 

chain transfer agent and 0.1 equiv of AIBN at 80°C. 

 

 

The polymerization was quenched in ice water, and the mixture was precipitated in 

ether. The mixture was centrifuged at 3000 rpm for 5 min and redispersed in THF. The 

RAFT agent was removed by reaction with an excess of AIBN at 64 °C for 1 h. Thus, the 

polymer was capped with a 2-cyanoisopropyl moiety to prevent side reactions with the 

original trithiocarbonate end group. The polymer was purified by several precipitations in 

ether and was redispersed in THF for subsequent use. 

 

 

The last step is the modification of the NMS group with the histamine group. The 

above polymer is mixed with histamine·2HCl in DMSO and heated overnight at 70 °C. 
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The polymer was purified by dialysis for 24h and followed by several precipitations before 

attaching to the QDs. 

 

 

A series of polymers with different composition and molecular weight have been 

prepared and summarized in Table 4.1. 

 

Table 4.1. Polymer characteristics used for the ligand exchange of QDs 

 

 

4.2.3  Ligand exchange and characterization of the PIL capped aqueous QDs 

The CdSe/CdZnS QDs were prepared by the SILAR method as described 

previously. Totally 5 monolayers of the alloy shell were grown onto the CdSe core surface. 

The QY of the as-synthesized QDs was found to be 81% compared to rhodamine 590 

(R590, QY=99% in ethanol). The sample was purified by the GPC method to remove the 
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excess ligands and impurities before the ligand exchange. After purification, the QY drops 

to 56%, which is in line with the previously described QY regeneration result. According 

to TEM (Figure 4.1A) and absorption spectrum, the QDs retained their monodispersity 

and narrow size distribution after purification. The initial ligand density was found to be 

296 oleate species per QD by NMR with ferrocene as the internal standard. The 

hydrodynamic radius of QD was approximately 5.0 nm based on dynamic light scattering 

(DLS) volume distribution measurements (Figure 4.1B). 

 

Figure 4.1 The TEM image (A) and DLS measurement (B) of GPC purified CdSe/CdZnS 

QDs. 

 

After the QD purification by GPC, the ligand exchange reactions were done with 

four different molecular weight poly(PEGMA-co-imidazole) samples (11K, 18K, 30K, and 

50K) by using a modification of the method published previously for acrylate based 

imidazoles. After the reactions, all of QDs in each sample could be well dispersed into pH 

= 7.4 buffer to form clear solutions that remained stable for more than 1 month when stored 

at 4 °C. According to the absorption spectrum, there was no size change after the ligand 

exchange reaction. We further confirmed the monodispersity of the various polymeric 

imidazole ligand (PIL) coated aqueous QDs by TEM and DLS analysis. Figure 4.2 shows 

the TEM of quantum dots drop-cast from aqueous solution, which revealed discrete 
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inorganic cores in all samples. In parts C and D, where the polymers involved higher 

number average molecular weight (Mn) and higher imidazole content (Table 4.1), the 

quantum dots displayed higher interparticle separation and decreased abundance of 

aggregated structures compared to those seen in parts A and B. DLS analysis showed lower 

hydrodynamic radii in parts A and B (8−8.6 nm), indicating that the quantum dots diffuse 

as discrete particles in solution. We note that the higher interparticle distance and higher 

hydrodynamic radii in parts C and D (15.2−17 nm) indicate a prominent role of the chain 

length and imidazole content in determining dispersion (Figure 4.3). The polymer 

compositions were calculated via NMR, and the repeat units of imidazole ranged from 32 

to 134. The 11K and 18K polymers utilized a 550 g/mol PEG side chain, while the 30K 

and 50K incorporated a 950 g/mol side chain. The 30K and 50K polymers both have 

 

Figure 4.2 TEM images of aqueous CdSe/CdZnS QDs with different molecular weight 

polymeric imidazole capping ligands with molecular weight (Mn) A: 11K MW; B: 18K 

MW; C: 30K MW; D: 50K MW (scale bar = 20 nm). Copyright 2014 American Chemical 

Society. 
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Figure 4.3 The DLS measurement of aqueous CdSe/CdZnS QDs with different molecular 

weight polymeric imidazole capping ligands. A: 12k MW; B: 18k MW; C: 30k MW; D: 

50k MW. 

 

 

Figure 4.4 Quantum yield measurements of different molecular weight polymeric 

imidazole ligand capped QDs. A: 11K MW; B: 18K MW; C: 30K MW; D: 50K MW. The 

excitation wavelengths used for each measurement are marked by the red line. Absorption 

spectra (black) and emission spectra (blue) of QDs are shown as solid lines, while dashed 

lines indicate rhodamine 590 in ethanol. Figure E shows comparison of photographs 

displaying the fluorescent properties of the quantum dots in an aqueous medium in the 

presence of ambient light and UV light. Copyright 2014 American Chemical Society. 
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significantly higher loadings of the imidazole (104 and 134 as compared to 32 and 44 for 

the 11K and 18K, respectively) and may be helpful in obtaining superior dispersions. The 

improvement of the dispersion as the molecular weight and binding group content increases 

is congruent with the earlier work on functionalized polymers on various nanomaterials174–

176. The brightness of the QDs was also maintained after the ligand exchange reaction. As 

shown in Figure 4.4, the QY of these four samples was around 30% (compared to a QY of 

81% after synthesis and 56% after purification), which is suitable for applications of water-

soluble QDs as fluorophores and as energy-transfer donors. 

 

4.2.4  Toxicity and nonspecific binding test of the PIL capped QDs 

Before using the PIL-capped QDs in any biological sensing or imaging, the toxicity 

and nonspecific binding of the particles need to be characterized. The biological tests 

described here were done in collaboration with Colin Johnson from the Chemistry 

Department and Kayla Pate from Department of Chemical Engineering at USC.  

We implemented two fluorescence-based assays to evaluate the biocompatibility of 

MA-PIL coated QDs under conditions that are typical of a cell-surface labeling experiment. 

The model QDs we used here were CdSe/CdZnS QDs (shell thickness: 9 monolayers) and 

the PILs were prepared the same way as described in Chapter 4.2.2. The fluorescence-

based assays were executed on a plate reader platform, permitting multiple replicates of 

each data point and potential scalability to a large number of polymer formulations to 

facilitate screening and optimization of putative biocompatible QDs. Since a common 

delivery method of QDs is via intravascular injection, such that the QDs come in contact 

with human umbilical vein endothelial cells (HUVEC), these have been utilized in a host 
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of previous studies to assess QD toxicity177–179. In order to quantify the degree of 

cytotoxicity that the MA-PIL QDs elicited in HUVECs, a Calcein AM cell viability assay 

was utilized. The Calcein AM probe becomes fluorescent upon hydrolysis by esterases 

found in viable cells. Thus, cell viability can be assessed by the intensity of the fluorescence 

in the wells using a plate reader. Figure 4.5 shows the fluorescence signal from wells 

containing monolayers treated with QDs coated with varying molecular weight MA-PILs 

(10K, 22K, 34K); fluorescence is normalized to the signal from wells with equivalent DI 

water (vehicle control). None of the cells treated with 100 nM QDs demonstrate a 

significant difference from vehicle after 24 h exposure. In addition, results were compared 

to a positive control in the form of a solution of 0.025 mM cadmium acetate. In soluble 

forms, cadmium is a highly cytotoxic and carcinogenic element; its presence in many 

varieties of nanocrystal QDs has been a source of concern in biological applications. 

Indeed, we observed significant toxicity for low micromolar concentrations of aqueous 

cadmium ion. In contrast, the total cadmium concentration in the QD samples is 0.68 mM 

based on the number of Cd atoms per QD; the absence of toxicity by QDs suggests that Cd 

remains effectively sequestered in the QDs throughout the timescale of the experiment. We 

note that as free polymers, PEG-MA derivatives have been shown previously to exhibit 

very low cytotoxicity, comparable to or better than linear PEGs.180 

To assess the propensity of the MA-PIL QDs to bind nonspecifically, the samples 

were introduced at a relatively high concentration (200 nM) to HUVECs in a medium 

containing 1% FBS and, following 5 min incubation, were decanted and rinsed so that any 

QDs that remained nonspecifically bound could be detected by virtue of their intrinsic 

fluorescence (Figure 4.6A). In order to focus on nonspecific adsorption and avoid  
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Figure 4.5 Effect of MA-PIL QDs on cell viability. A, HUVEC monolayers were 

incubated for 24 h (37C) with 100 nM QDs coated with MA-PIL ligands exhibiting 

molecular weights of 10K, 22K, or 34K or with 25 µM cadmium acetate (Cd, positive 

control). Cell viability was then assessed using Calcein AM. B, Cell viability is reported 

as the experimental Calcein AM fluorescence normalized to the Calcein AM fluorescence 

observed for cells treated with vehicle only. Dashed line represents average cell viability 

of the vehicle. Error bars indicate SEM, n=3. ***p<0.001 vs. vehicle. Copyright 2015 

Elsevier. 

 

complications introduced by uptake via endocytosis, the incubation was conducted at low 

temperatures where endocytosis is less active. After three washes with PBS, the cells 

(treated with QDs with each coating, in triplicate) were analyzed via a plate reader to detect 
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fluorescence at the QD emission channel. Any QDs remaining after the washes, for 

example as a result of nonspecific binding to cell surfaces or the culture substrate, would 

result in a contribution to the fluorescence that is absent in the wells exposed to vehicle 

only. Figure 4.6 B shows the plate reader results for each of the three MA-PIL QD samples. 

A fluorescence reading was also taken prior to washing, as an internal control for variation 

in the brightness of the QD samples. The results are expressed as a fraction of the vehicle. 

No significant increase in residual fluorescence was observed compared to vehicle (both  

 

Figure 4.6 Nonspecific binding of MA-PIL QDs to HUVEC monolayers. (A) HUVECs 

were incubated for 5 min at 4 C with 200 nM QDs coated with MA-PIL ligands or with 

200 nM QDs coated with DHLA ligands (positive control). The presence of MA-PIL QDs 

was quantified via self-fluorescence (panel B) and also visualized using fluorescence 

microscopy (panel C, left column). Fluorescence quantification was performed both before 

(grey bars) and following (white bars) three washes, with the latter representative of 

nonspecifically bound QDs. Phase contrast images (panel C, right column) were acquired 

to verify intact cell monolayers. Fluorescence was normalized to that observed for 

monolayers treated with a DI water equivalent (vehicle). Dashed line represents the 

normalized, average fluorescence observed for the vehicle. Error bars indicate SEM, n = 

3–4. Some error bars lie within symbols. *p < 0.05 and ***p < 0.001 vs. vehicle. Images 

are representative of 3–4 independent experiments; scale bars represent 200 µm.  Copyright 

2015 Elsevier. 
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sample and vehicle values include a similarly small but non-zero contribution from 

autofluorescence and background).  

The plate reader measurement provides a scalable, ensemble measurement of 

nonspecific binding that is immune to sampling bias that could be encountered in methods 

relying solely on fluorescence microscopy. As a positive control to confirm the ability of 

the method to detect nonspecific binding, we tested QDs coated with DHLA ligands. The 

carboxylate on DHLA is deprotonated at neutral pH, providing anionically stabilized QDs 

with a strongly negative zeta potential; DHLA-coated QDs have previously been observed 

to exhibit strong nonspecific binding to human cells.38 Here, we confirm this observation 

with significant residual fluorescence detected at more than twice the vehicle. 

 

4.2.5  Conclusion 

In this work, we presented a facile copolymerization and post-modification method 

to prepare multidentate histamine copolymers which were shown to act as excellent ligands 

for CdSe/CdZnS QDs in aqueous solutions. The ligand exchange reactions were 

demonstrated using quantum dot starting materials with well-defined metrics including the 

type and average number of initial ligands as achieved by gel permeation chromatography. 

From the ligand exchange results and bio-compatible study, we did not observe any 

significant difference in QDs’ performance over the range of polymer molecular weight. 

This result will be a valuable point of reference for further optimization of biocompatible 

QDs, including those introducing specific targeting functions through introduction of bio-

affinity groups or bio-orthogonal linking chemistries. 
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4.2.6  Materials 

The following chemicals were used as received from Fisher Scientific unless stated 

otherwise below. Cadmium oxide (CdO; 99.999%), Zinc oxide (ZnO; 99.999%), 

Trioctylphosphine (TOP; 97%) and Trioctylphosphine oxide (TOPO; 99%) were 

purchased from STREM Chemicals. Oleic Acid (99%), 1- Octadecene (ODE; 90% 

technical grade), 1-Tetradecylphosphonic Acid (TDPA; 98%), Selenium (Se; 99.999%) 

were purchased from Alfa Aesar. Bio-Beads S-X1 GPC medium was obtained from Bio-

Rad Laboratories, Inc. Chloroform (D, 99.8%) was obtained from Cambridge Isotope 

Laboratories, Inc. Decylamine (95%) was purchased from Sigma Aldrich. Oleylamine (80-

90%) and Bis(trimethylsilyl) sulfide ((TMS)2S; 95%) were purchased from Acros 

Organics. Rhodamine Chloride 590 (R590, MW 464.98) was obtained from Exciton. 

Toluene (99.5% ACS analysis grade) was purchased from Mallinckrodt Chemicals. 200 

Proof Ethyl Alcohol (Ethanol) was obtained from Decon Laboratories, Inc. Acetone 

(99.9%) was purchased from VWR. AIBN was purchased from Sigma-Aldrich and 

recrystallized thrice from methanol. Poly(ethylene glycol) methacrylate (500 and 950 

g/mol) were obtained from Sigma-Aldrich and passed through a neutral alumina column 

to remove inhibitors before use.  

4-Cyano-4- [(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid was obtained 

from Strem Chemicals, Inc. All media components were from Sigma Aldrich. 96 well 

plates with clear plastic bottoms and black walls were obtained from VWR. Calcein AM 

was obtained from Invitrogen.Synthetic or analytical procedures either under nitrogen (N2) 

or vacuum environment were carried out using Schlenk line techniques, or a glovebox. 
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Synthesis of CdSe/CdZnS QDs. The CdSe core was prepared by hot-injection 

method as described previously. CdZnS shell was coated by selective ionic layer adhesion 

and reaction (SILAR) approach. A portion of as-synthesized CdSe core was diluted with 

hexane and flocculated by methanol and acetone. After decanting the supernatant, the QDs 

were redissolved into hexane and held at 4°C for more than 12 hours. All the undissolved 

materials were removed by centrifugation and the sample was precipitated again by an 

addition of methanol and acetone. Afterward, the QDs were brought into a measured 

volume of hexane. The UV-Vis absorption spectrum was recorded at a known dilution of 

the sample to determine the size and quantity of QDs. 

The solution of QDs in hexane was transferred to a solvent of 1:2 oleylamine:ODE 

(v/v, 9mL total) and degassed at 100°C to remove hexane. Before the addition of the 

reagent via syringe pump, the system was heated to 190°C under nitrogen. The metal 

precursor is prepared by diluting 0.2M Cd(oleate)2 in ODE and 0.2M Zn(oleate)2 in ODE 

(ratio of Cd:Zn is 1:1) with 2 equivalents of decylamine and a volume of TOP to yield a 

metal concentration of 0.1M. The S precursor was a 0.1M solution of (TMS)2S in TOP. 

The volume increase associated with 1 monolayer coverage of CdxZn1-xS is calculated 

based on the radius increase of 3.37Å, which is half of the wurtzite c-axis unit cell 

dimensions for CdS. Alternating injections of metal precursor and sulfur precursor were 

performed, adding the metal precursor solution first, with injections starting every 15 

minutes. The flow rate was adjusted to complete each injection over the course of 3 

minutes. The volume of each injection was calculated to apply one monolayer coverage 

each cycle (a cycle is defined as one metal precursor injection and one sulfur precursor 

injection). The growth process is monitored by the absorption and emission spectra.  After 
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the reaction, the mixture was cooled down to the room temperature and the molar extinction 

coefficient was estimated based on the amount of the core introduced at the beginning and 

the total volume of the solution after the synthesis. 

PIL ligand exchange reaction for CdSe/CdZnS QDs. The ligand exchange 

reaction was performed by a modification of a published method.2 Approximately 3 nmol 

purified QDs samples were pumped dry to remove toluene and brought to 0.3 mL 

chloroform/PIL solution (the molar ratio of PIL to QD is ranging from 150 to 200). The 

single phase mixture was stirred vigorously at room temperature for 30 min, after which 

methanol was introduced followed by stirring for additional 20 min (the amount of 

methanol is equal to 30% of the total volume of the chloroform). The QDs were precipitated 

once by addition of ethanol/hexane, redissolved in pH=7.4 aqueous phosphate buffer 

solution, filtered by polyethersulfone membrane (pore size: 0.2 μm), and then dialyzed by 

a centrifugal tube with 50000 nominal molecular weight cutoff (MWCO) membrane for 

further analysis.  

Optical Spectroscopy. The formation of CdSe QDs and CdZnS shell on the surface 

was monitored by the absorption spectrum from UV-Vis spectroscopy. The optical 

absorption spectrum was recorded using a Thermo Scientific Evolution Array UV-Visible 

Spectrophotometer with toluene as the solvent as well as the blank in a 1cm path quartz 

cuvette. The fluorescence spectra were also used to monitor the growth and size 

distribution of the QDs. Emission spectra were recorded by an Ocean Optics USB 4000 

spectrometer under ~365 nm excitation. 
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NMR Analysis of QDs. NMR samples of the QDs were prepared in CHCl3-d. The 

1H NMR spectra were recorded on a Varian Mercury/VX 400 NMR with ferrocene as the 

internal standard. The relaxation delay used is 30s and the acquisition time is 3s, allowing 

the system to reach a reliable equilibrium.  

Quantum Yield Measurement. The quantum yield (QY) of the CdSe/CdxZn1-xS 

QD samples was measured relative to rhodamine 590 (R590, QY=99% in ethanol). The 

excitation wavelength was chosen at 514nm. Fluorescence spectra of QD and R590 dye 

were taken under identical spectrometer conditions on Varian fluorescence spectrometer 

in triplicate and averaged. The optical density was kept below 0.1 between 500 and 800nm 

to avoid internal filtering effects. The QY was calculated based on the integrated intensities 

of the emission spectra, the absorption at the excitation wavelength and the refraction index 

of the solvent using the equation: 

 𝑄𝑌𝑄𝐷𝑠 = 𝑄𝑌𝑑𝑦𝑒 ∗
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒𝑑𝑦𝑒

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒𝑄𝐷𝑠
∗

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑄𝐷𝑠

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑑𝑦𝑒
∗

𝑅𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥𝑡𝑜𝑙𝑢𝑒𝑛𝑒
2

𝑅𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥𝑒𝑡ℎ𝑎𝑛𝑜𝑙
2  

The precision of this measurement in our case is limited by the precision of the absorbance 

measurement (~1%) while the accuracy among samples in different solvents will be limited 

by the accuracy of the refractive index correction term. 

Transmission electron microscopy. After purification, the original ligand capped 

and PIL capped CdSe/CdxZn1-xS QD samples were brought into toluene or water to form a 

dilute solution (0.15 μM). One drop of the solution (~20 μL) was drop-casted on a clean 

TEM grid (400 mesh Ni grid with ultrathin carbon support film, Type-A, Ted Pella, Inc.). 

After allowing the sample to deposit on the grid for 30 min, the excess solution has been 

winkled away with a tissue. The grids then have been pumped dry under vacuum for 
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2 hours. The samples were imaged by Hitachi H8000 scanning transmission electron 

microscope. 

 Dynamic light scattering measurement. The hydrodynamic radius of the purified 

QD samples were measured via dynamic light scattering (DLS) using a DynaPro-MSX 

instrument with 690nm laser wavelength (Wyatt Technology Corporation, Santa Barbara, 

CA). The sample was exposed to an appropriate laser intensity to determine the size and 

sized distribution of particles. 

 Cell Culture and Preparation. Human umbilical vein endothelial cells (HUVECs) 

(American Type Culture Collection) were maintained in Ham’s F12K medium 

supplemented with 10% fetal bovine serum (FBS), 0.1 mg/mL heparin, 30 µg/mL 

endothelial cell growth supplement, 100 units/mL penicillin, and 100 μg/mL streptomycin. 

Prior to experimentation, HUVECs were seeded at a density of 5x104 cells/well onto black-

sided 96-well tissue culture plates and maintained for 24 h in supplemented Ham’s F12K 

medium with 1% FBS to allow formation of confluent monolayers. All cultures were 

maintained at 37°C in a humid atmosphere of 5% CO2 and 95% air. 

Calcein AM Cell Viability Assay. To characterize the potential toxicity of MA-

PIL QDs, Calcein AM was used to assess cell viability following exposure to QDs. 

Confluent HUVEC monolayers were incubated (37°C, 5% CO2) with QDs coated with 

MA-PILs exhibiting effective molecular weights of 10K, 22K, or 34K. QD solutions were 

prepared by adding small aliquots of MA-PIL QD solutions in DI water to supplemented 

medium containing 1% FBS to achieve an ultimate concentration of 100 nM QDs. 

Monolayers incubated with equivalent dilution of DI water or with 25 μM  cadmium acetate 

http://www.hitachi-hta.com/
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served as the vehicle and positive controls, respectively. Following 24 h incubation, 

treatments were decanted and replaced with 1 μM Calcein AM diluted in phenol red-free, 

serum-free media. When taken up by living cells, the non-fluorescent Calcein AM probe 

is hydrolyzed by endogenous esterases to yield fluorescent acetoxymethyl ester, thereby 

allowing for a quantifiable measurement of cell viability. After 1 h incubation (37°C, 5% 

CO2), fluorescence was measured using a BioTek Synergy 2 multi-mode microplate reader 

equipped with excitation and emission filters of 485 ± 20 nm and 530 ± 25 nm, respectively, 

and using baseline (media containing Calcein AM) subtraction. Cell viability is reported 

as Calcein AM fluorescence normalized to the fluorescence observed for the vehicle. Each 

treatment was performed in triplicate, and results shown are the mean  SEM of three 

independent experiments. 

Nonspecific Binding Assay. To evaluate nonspecific interactions between MA-

PIL QDs and cells, a static adhesion assay was implemented. Confluent HUVEC 

monolayers were incubated for 5 min with MA-PIL QDs exhibiting molecular weights of 

10K, 22K, or 34K. QD solutions were prepared by adding small aliquots of MA-PIL QD 

solutions in DI water to supplemented medium containing 1% FBS to achieve an ultimate 

concentration of 200 nM.  Incubations were performed at 4°C to induce a state of cellular 

stasis, thereby preventing the endocytosis of MA-PIL QDs. Monolayers incubated with 

equivalent dilution of DI water or 200 nM of QDs coated with dihydrolipoic acid (DHLA) 

served as vehicle and positive control for nonspecific binding, respectively.  Immediately 

following incubation, fluorescence was measured to serve as an internal positive control 

for each QD’s self-fluorescence. Cells were then washed three times using PBS, pH 7.4, 

and fluorescence was measured again to evaluate nonspecific binding. Fluorescence was 
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measured using a BioTek Synergy 2 multi-mode microplate reader equipped with 

excitation and emission filters of 530 ± 25 nm and 590 ± 35 nm, respectively. Fluorescence 

measurements were normalized to the fluorescence observed for the vehicle. Each 

experiment was performed with three or four replicates, and results are shown as the mean 

 SEM of these independent experiments. To corroborate fluorescence results and assess 

sensitivity, monolayers were additionally imaged using a Nikon Eclipse Ti-E inverted 

microscope equipped with a 20X objective lens. Bright field and TRITC laser (excitation 

= 555 ± 10 nm; emission = 600 ± 20 nm) images were acquired for each sample. Images 

shown are representative of three to four independent experiments. 

 

4.3 Surface labeling of enveloped virus with polymeric imidazole ligand-capped 

quantum dots via metabolic incorporation of phospholipid in host cells  

4.3.1 Introduction  

As mentioned in Chapter 1, in order to use QDs for selective labeling in bio-imaging 

applications, the linker needs to have at least three different functional groups: one group 

to stabilized QDs in water; one group providing binding ability with the QDs surfaces; and 

the last group for attachment onto the biological target. As shown in the previous part of 

this chapter, PIL capped QDs have shown good dispersity in water, high quantum yield 

(QY), and low toxicity and non-specific binding to the cells. Those characteristics make 

PIL-QDs an attractive candidate for labeling. However, the previously established PEG-

imidazole bi-polymer is lacking one group for biological targeting attachment. Therefore, 

a ternary copolymer version of the MA-PILs, which incorporates PEG side chains for steric 
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stabilization in water, imidazole anchoring groups, as well as primary amines that are 

available for further modification, has been prepared.181  

 The target virus we selected is measles virus (MV). Measles virus (MV) is a 

member of the morbillivirus subgroup of paramyxoviruses, containing glycosylated 

envelope proteins hemagglutinin (H) and fusion (F) that are embedded on the phospholipid 

bilayer envelope.182 Live attenuated MV has been shown to possess promising oncolytic 

activity against many tumor cells,183 which enables the possibility of virotherapy for cancer 

treatment.184 For the sake of virotherapy, it is urgent to develop labeling strategies to site-

specifically modify the virus surface with functional handles such as a folate and folate 

receptor-specific antibody, which can achieve targeting to tumor cells while avoiding 

normal cells.185 The surface modification of enveloped virus in literature has focused on 

both surface proteins and on the phospholipid envelope. The covalent linkage of 

functionalities to surface proteins that is achieved by chemical modification186, genetic 

engineering187 and metabolic incorporation of azido sugars,188,189  likely affects the normal 

properties of viruses including their interaction with host cells. Since the virus envelope is 

derived from a host cell membrane,190 the metabolic incorporation of phospholipids that 

carry functional groups into the host cell membrane has enabled the subsequent 

modification of virus envelopes during virus replication and assembly191. 

 Until now, little work has been done using QDs to label enveloped virus. Wang’s 

group and Pang’s group have utilized the streptavidin-conjugated QDs to modify the 

vesicular stomatitis virus and influenza virus successfully for the study of the tracking of 

labeled virus into host cells.192–194 Similarly, Cai’s group has labeled the enveloped 

baculovirus with PIL-capped QDs through copper-free click chemistry and maintained 
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their infectivity.41 Xie’s group and Pang’s group have also modified the vaccinia virus, 

influenza virus and vesicular stomatitis virus with QDs that were functionalized by direct 

modification of amine and carboxylic-acid functionalized QDs.186,195,196 However, all of 

these works are using genetic or chemical modification of a surface protein to label the 

virus. Additionally, except for Cai’s work, the studies all employed acyl transfer chemistry 

to install clickable handles on water soluble QDs with amine-bearing coatings. In such 

cases, the synthetic yield for functional group attachment may be limited due to competing 

interactions on the QD surface environment. 

 

Figure 4.7 Schematic illustration of the synthesis of PIL-QDs-DBCO, the azide labeling 

of measles virus assisted by host cells and the strategy for labeling virus with QDs via 

copper-free click chemistry. 

 

 In this work, we labeled a live attenuated MV envelope with azido groups by 

metabolically incorporating an azide-bearing choline analogue AECho into the MV 
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phospholipid bilayer via host cells. Then the as-synthesized CdSe/CdZnS QDs were 

purified by gel permeation chromatography and subsequently exchanged with 

dibenzocyclooctyne (DBCO) functionalized MA-PILs.197,198 The exchanged QDs (PIL-

QDs-DBCO) were attached to the azide-labeled MV (N3-MV) through a copper-free, 

strain-promoted azide-alkyne cycloaddition (SPAAC) reaction (Figure 4.7). The QD-

labeled MV maintains its infectious ability against host Vero cells. We believe the present 

study demonstrates the feasibility of the metabolic labeling approach, and the viability and 

utility of a mild and reproducible method for membrane-enveloped virus labeling with 

QDs. 

 

4.3.2 Fabrication and characterization of PIL-QDs-DBCO 

The QDs were prepared by a selective ionic layer adhesion reaction (SILAR) method as 

described previously, and in total, 9 monolayers of CdZnS shell were grown to achieve the 

desired emission wavelength. The formation of the shell was monitored by the absorption 

and emission spectra of the aliquots taken during the growth (Figure 4.8). The ternary 

polymer version of the PILs was prepared as described previously. The as-synthesized 

polymer was purified and functionalized with DBCO though the active ester NMS group.  
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Figure 4.8 The absorption (left) and emission (right) spectra of aliquots taken during the 

overcoating processes of CdSe/CdZnS QD samples. Aliquots were taken after CdSe core 

purification at room temperature, prior to the shell synthesis at reaction temperature and 

after each injection of the SILAR process. The spectra were normalized to the position of 

the lowest energy extinction peak. 

 

Figure 4.9 The DBCO group on PIL-QDs-DBCO detected by absorbance measurement 

using an azide dye. 
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Figure 4.10 The absorbance (black) and emission (blue) spectra of PIL-QDs-DBCO in 

PBS. (B) TEM image of PIL-QDs-DBCO in aqueous solution. Scale bar indicates 20 nm. 
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Figure 4.11 The Cell viability assay of PIL-QDs-DBCO at different concentrations. 
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The QDs were purified by GPC and then functionalized with the above DBCO-

containing MA-PIL polymer. In order to confirm the ligand-exchanged QDs can be used 

to label the virus through SPAAC reaction, an azido dye was introduced to a separated PIL-

QDs-DBCO solution. As shown in Figure 4.9, the absorption feature of the azido dye can 

be observed after a series of dialysis processes, which confirms that the DBCO group has 

been successfully attached onto the QDs and maintains its reactivity toward organic azides. 

According to the absorption spectrum and TEM image, the PIL-QDs-DBCO remained their 

monodispersity and narrow size distribution in PBS (pH=7.4) without any visible sign of 

aggregation (Figure 4.10). The sample remained stable for more than 6 months when 

stored in a 4 °C refrigerator, which maintained its quantum yield at 19% and hydrodynamic 

radius at around 17.3 nm with minimal aggregation based on DLS measurements. The 

toxicity of the PIL-QDs-DBCO was detected by cell viability assay, which indicated an 

absence of cytotoxicity to Vero cells (Figure 4.11). 

 

4.3.3 Biolabeling of PIL-QDs-DBCO with Vero cells and measles virus  

The choline analogue azidoethyl-choline (AECho) was synthesized following the reported 

procedure. Vero cells were used as host cells for MV propagation and were grown in 

complete Dulbecco’s modified Eagle’s medium (DMEM) supplemented with AECho at 

certain concentrations. After co-incubation with AECho for 48 h, the Vero cells were fixed 

and stained with PIL-QDs-DBCO via SPAAC reaction. The staining showed strong 

fluorescence signal of QDs on the cell membrane, demonstrating the successful 

incorporation of azido group into cell membrane (Figure 4.12D). Since we did not observe 

any nonspecific binding with the imidazole-PEG copolymer coated QDs, we believe that 
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the minute binding of PIL-QDs-DBCO on normal cells is due to the interaction between 

cell surface and DBCO/amine group, which does not influence the imaging results. The 

cell viability could be kept above 90% when incubated with AECho at 600 µM for 48 h, 

indicating its biocompatibility (Figure 4.12A).  

 

Figure 4.12 (A) CellTiter-Blue viability assay of Vero cells incubated with AECho at 

different concentrations for 24 h. (B) Production of control MV and N3-MV. (C) One-step 

growth curves of control MV and N3-MV. *p=0.14. (D) Fluorescence imaging of azide-

labeled Vero cells stained with PIL-QDs-DBCO (red) and DAPI (blue). Scale bars indicate 

0.05mm of regular views and 0.02mm of enlarged views. (E) TEM images of control MV 

(top) and N3-MV (bottom). Scale bars indicate 200 nm. 

 

To achieve azide labeling of the MV envelope, viruses were propagated on azide-

labeled Vero cells incubated with 400 µM AECho. The progeny viruses that are grown in 
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AECho-treated Vero cells should be propagated with azido groups incorporated into their 

envelope upon release from their host cells, producing the azide-labeled MV (N3-MV). The 

N3-MV were purified from the cell culture medium on 20%-60% sucrose gradient.199 To 

evaluate the production of N3-MV, 50% tissue culture infective dose (TCID50) of viruses 

were detected based on the Reed-Muench formula. The data showed that control MV and 

N3-MV were at a comparable titer that around 106 TCID50 mL-1, suggesting metabolic 

labeling did not affect the propagation of MV in host Vero cells (Figure 4.12B). The 

infectivity of N3-MV was evaluated by one-step growth kinetics.200 As shown in Figure 

4.12C, the N3-MV could reach 2×105 TCID50 mL-1 at 96 h post-infection, which did not 

indicate a statistically significant difference from that of control MV. In addition, the N3-

MV retained the intact structure of the control virus (Figure 4.12E). These results 

suggested that the azide labeling via metabolic incorporation of choline analogue AECho 

did not disturb virus production or infectivity. 

A co-localization assay was performed to evaluate whether the N3-MV could 

indeed be functionalized via the SPAAC reaction. The viruses were overlaid on coverslips 

for 60 min at 37 °C, then fixed, permeabilized, and stained with both DBCO-Fluor 488 for 

azido group and propidium iodide (PI) for nucleic acid. The fluorescence imaging results 

showed that most of the fluorescence signal of PI co-localized with that of Fluor 488 for 

N3-MV, appearing as yellow in a merged image. In contrast, there was no Fluor 488 signal 

observed for the control MV. (Figure 4.13A).Therefore, it was further verified that virus 

produced from azide-labeled Vero cells had azido group incorporated into virus surface, 

which was available for further chemical modification with DBCO derived functionalities 

through SPAAC reaction. 
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Figure 4.13 (A) Fluorescence imaging of control MV and N3-MV stained with DBCO-

Fluor 488 (green) and propidium iodide (red). Scale bars indicate 0.05mm of regular views 

and 0.01mm of enlarged views. (B) Fluorescence imaging of Vero cells co-incubated with 

QDs-labeled MV (red, QDs; blue, DAPI labeled cell nucleic acid). Scale bars indicate 

0.1mm of regular views and 0.025mm of enlarged views. 

 

We further labeled the azide modified virus with PIL-QDs-DBCO, followed by co-

incubating with a new set of Vero host cells. The fluorescence imaging showed a 
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remarkably prominent signal of QDs on the cell membrane, indicating that QDs-labeled 

MV could interact with Vero cells. Conversely, there was no signal of QDs when the cells 

were co-incubated with a mixture of control MV and PIL-QDs-DBCO, suggesting that no 

obvious nonspecific adsorption of the PIL-QDs-DBCO on the cell surface occurs (Figure 

4.13B). The interaction between the QDs-labeled MV and Vero cells demonstrates that the 

covalent attachment of QDs onto N3-MV did not compromise the infectious ability of the 

virus against host cells. 

 

4.3.4 Conclusion 

We have proposed a mild and reproducible method to prepare QD-labeled viruses. 

We demonstrated that enveloped MV could be metabolically labeled with a choline 

analogue AECho assisted by host cells. The azide incorporation into viral surface did not 

affect production and activity of progeny N3-MV. The QDs can be functionalized with 

DBCO-bearing methacrylate-based polymeric imidazole ligand, and subsequently 

maintain brightness and colloidal stability for more than 6 months. The QDs and virus can 

be linked together through SPAAC reaction without the addition of a copper catalyst, and 

the infectious ability of virus does not change. The remarkable ease of this metabolic 

labeling approach makes it accessible to other membrane-enveloped viruses, and the MA-

PIL capped QDs have also been proven to be a reliable bio-imaging probe. It is envisaged 

that this labeling strategy will greatly facilitate the development of new anticancer agents 

that can retarget oncolytic viruses specific to cancer cells for cancer virotherapy.  
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4.3.5  Materials 

Cadmium oxide (CdO; 99.999%), zinc oxide (ZnO; 99.999%), trioctylphosphine 

(TOP; 97%) and trioctylphosphine oxide (TOPO; 99%) were purchased from STREM 

Chemicals. Oleic acid (99%), 1- octadecene (ODE; 90% technical grade), and selenium 

(Se; 99.999%) were purchased from Alfa Aesar. Bio-Beads S-X1 GPC medium was 

obtained from BioRad Laboratories. Oleylamine (80-90%) and Bis(trimethylsilyl) sulfide 

((TMS)2S; 95%) were purchased from Acros Organics. Rhodamine chloride 640 (R640) 

was obtained from Exciton. Toluene (99.5% ACS analysis grade) was purchased from 

Mallinckrodt Chemicals. AIBN was purchased from Sigma Aldrich and recrystallized 

thrice from methanol. Poly(ethyleneglycol) methacrylate (500 g mol−1) was obtained from 

Sigma Aldrich and passed through a neutral alumina column to remove inhibitors before 

use. Measles virus (MV) and Vero cells were obtained from the U.S. Centers for Disease 

Control and Prevention (CDC). DBCO-NHS ester and DBCO-Fluor 488 were purchased 

from Click Chemistry Tools. All the other chemicals were purchased from Fisher and used 

as received. Procedures under nitrogen (N2) or vacuum environment were carried out using 

Schlenk line techniques or a glovebox.  

Transmission electron microscopy (TEM) imaging, DLS measurements and QY 

characterizations were done in the same way as described in Chapter 4.2. CellTiter-Blue 

cell viability assays were measured with Tecan Infinite M200 microplate reader. 

Fluorescence images were obtained using Carl Zeiss LSM 700 confocal laser scanning 

microscope. 

Preparation of PIL-QDs-DBCO. The CdSe/CdZnS core/shell QDs were 

synthesized through a selective ionic adhesion and reaction (SILAR) method. The growth 
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process was monitored by absorption and emission spectra. Totally 9 monolayers of CdZnS 

shells were coated onto the CdSe core. The MA-PIL ternary polymer was prepared as 

described previously, which includes 40% imidazole for QD binding, 20% amine for post-

modification and 40% PEG for water solubility. The number average molecular weight of 

the polymer was 33.5 kD and the polydispersity index (PDI) was 1.19. The PIL polymer 

was purified by dialysis and precipitation/redissolution, and then functionalized with 

DBCO by stirring the polymer with DBCO-NHS ester (polymer to DBCO mole ratio is 

1:10) in a mixture of DMSO and chloroform (1:4) overnight. The as-synthesized QDs were 

purified by one cycle of precipitation and redissolution followed by GPC purification in 

toluene solvent. After this, the QDs were pumped dry and mixed in the above DBCO-

polymer solution (mole ration QD:polymer = 1:100). The mixture was stirred for 1 h, after 

which 0.5 mL methanol was injected into the solution and stirring was continued for 

another 30 min. The resulting PIL-QDs-DBCO were precipitated by hexane and ethanol 

and redispersed by phosphate buffer saline (PBS). The water soluble dots were further 

purified by dialysis and filtration with a 0.2 µm membrane. 

Cell culture and azide labeling. Vero cells were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM, Hyclone) supplemented with 10% fetal bovine serum (FBS, 

Atlanta Biologicals), 100 IU/mL penicillin and 100 μg/mL of streptomycin (Hyclone). The 

azide labeling of Vero cells was achieved by cultivating cells in the DMEM containing 

certain concentrations of AECho. For fluorescence imaging, the azide-modified Vero cells 

were washed with PBS and fixed with 4% (w/v) paraformaldehyde. Upon that, cells were 

stained by 10 µM DBCO-Fluor 488 or 10 nM PIL-QDs-DBCO for 1 h, then washed with 

PBS. The nucleic acid of the cells was stained with 1 μg/mL DAPI for 10 min. After 
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washing, the cells were imaged by a Carl Zeiss LSM 700 confocal laser scanning 

microscope imaging system. The PIL-QDs-DBCO was excited using a 555 nm laser, 

emitting 550-650 nm fluorescence. DBCO-Fluor 488 was excited using a 488 nm laser, 

emitting 500-600 nm fluorescence. The DAPI was excited with 405 nm laser, emitting 420-

500 nm fluorescence. 

Virus propagation and azide labeling. MV was propagated in monolayer of Vero 

cells in the presence of 2% FBS. Generally, Vero cells were infected with wild type MV 

with a multiplicity of infection (MOI) of 0.1 pfu/cell. For the azide-labeled MV (N3-MV) 

propagation, the medium was supplemented with 400 μM AECho. The infected cells were 

scraped into medium 72 h post-infection and the cell debris was removed by centrifugation 

at 3000 g for 15 min (4 °C). The control MV and N3-MV were purified over a gradient of 

sucrose centrifuged at 30,000 rpm for 3 hours (4 °C).  

Virus titer assay. The titers of MV and N3-MV were quantified by 50% tissue 

culture infective dose (TCID50). Vero cells were cultured in 96-well plates in complete 

medium until the cells reached 80-90% confluence, followed by replacement of DMEM 

containing 2% FBS. The virus samples prepared in DMEM by 4-fold serial dilutions were 

added to Vero cells. After culture for 3 days, the cells were stained with 0.1% crystal violet 

and observed under an inverted microscope. The well number that had cytopathic effect 

(CPE) on Vero cells were counted for the TCID50 calculation according to the Reed and 

Muench method.  

One-step growth assay. MV and N3-MV were inoculated in Vero cells monolayer 

at MOI of 0.2 pfu/cell for 8, 24, 48, 72, 84 and 96 h, respectively. At the end of each time 
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point, the infected cells were scraped into medium and the cell debris was removed by 

centrifugation at 3000 g for 15 min at 4 °C. The one-step growth curve of these viruses 

were titrated by TCID50 on normal Vero cells according to a previous report.  

Transmission electron microscopy imaging of the virus. The morphology of the 

viruses were characterized by transmission electron microscopy (TEM). 5 μL of MV or 

N3-MV was dropped onto a carbon coated copper grid that pre-treated by 1% alcian blue 

for 5min. After 10 min, unabsorbed virus was removed with filter paper. Grids were fixed 

by 2% paraformaldehyde for 5 min; after that, 10 μL of 0.5% uranyl acetate was applied 

for 30 sec. The samples were then observed with the TEM. 

Fluorescence co-localization assay. The purified MV or N3-MV solution was 

dropped onto cover glasses for 1 h at 37 °C. Excess viruses were then washed away with 

PBS solution, and the remaining viruses were fixed with 3% paraformaldehyde for 30 min 

at room temperature. After being permeabilized with 0.5% Triton X-100 in PBS, the 

viruses were incubated with 10 μM DBCO-Fluor 488 for 1 h. The nucleic acid of the virus 

was stained with 10 μg/mL propidium iodide (PI) for 15 min. Excess fluorophores were 

washed away with PBS. Fluorescence images were acquired using a Carl Zeiss LSM 700 

confocal laser scanning microscope imaging system. DBCO-Fluor 488 was excited using 

a 488 nm laser, emitting 500-600 nm fluorescence. PI was excited with a 555 nm laser, 

emitting 560-700 nm fluorescence.   

Fluorescence imaging of cells interacted with QDs-labeled Virus. QDs-labeled 

MV was prepared by incubating the N3-MV with 10 nM PIL-QDs-DBCO. Vero cells were 

cultured in 24-well plate at 1×105 cells/mL density. Then the cells were incubated with as-
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prepared QDs-labeled MV for 24 h at 37 °C to allow viruses binding, the unbound viruses 

were removed by washing with PBS. The nucleic acid of the cells was stained with 1 μg/mL 

DAPI solution for 10 min, after which the cells were imaged by a Carl Zeiss LSM 700 

confocal laser scanning microscope imaging system. QDs was excited with a 555 nm laser, 

emitting 550-650 nm fluorescence. DAPI was excited with 405 nm laser, emitting 420-500 

nm fluorescence. 

Cell viability assay. Cell viability was determined by using CellTiter-Blue Cell 

Viability Assay Kit (Promega). Vero cells were incubated with AECho or PIL-QDs-DBCO 

at certain concentrations for 24 h, followed by addition of 10% CellTiter-Blue Assay 

reagent and incubation for 2 h. The fluorescence intensity was measured at 560/590 nm 

(Ex/Em) using Tecan Infinite M200 microplate reader. Cells treated with only medium 

were considered 100% viable. 

 

4.4 Conclusion 

In this chapter, a new group of polymeric imidazole ligands (MA-PIL) have been 

prepared. These ligands can be effectively conjugated onto core/shell quantum dots, and 

the exchanged QDs maintain high stability in aqueous solution and decent quantum yield. 

Moreover, the MA-PIL capped QDs show negligible toxicity and non-specific binding, 

which makes them as a promising candidate for the bio-labeling applications. Ultimately, 

PIL-QDs were used to label a model measles virus though a click chemistry reaction, and 

the QDs-labeled virus maintained its infectious ability against host cells. Our work has 

provided a model system to prepare QDs-labeled viruses and cells under a mild condition, 
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using highly repeatable QD preparative methods. For the future work, a better 

understanding of interaction between the PILs and nanocrystals will be helpful in designing 

robust biocompatible QD probes against different environment in the biological system. 
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